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1 Introduction

Fractional impulsive differential equations originate inseveral field of applied mathematics and science. Abstract
fractional functional differential equations have recently proved to be valuable tools for the description of memory
processes and hereditary properties of various materials and systems. For detailed study of fractional differential
equations we refer the books [1,2,3], and the papers [4,5,6].

The study of impulsive differential equations have more attention in recent years due to its applications. Most of the
research papers dealt with existence of solutions for equations with instantaneous impulses, see for more details [7,8,9,
10,11]. In [12] E. Herenández et al. quoted that many authors used the concept of mild solutions inappropriately using the
semigroup theory for fractional differential equations. To make the concept of mild solution more appropriate, he treated
abstract differential equations with fractional derivatives based on the well developed theory of resolvent operators for
integral equations.

Fractional functional differential equations with state-dependent delay viewed frequently in applications as modelof
equations and several authors have studied about these typeof equations [13,14,15,16,17,18,19]. Also the theory of
abstract neutral differential equations arise in many areas of applied mathematics and for this reason, the study of such
equations have been treated in the literature recently, see[20,14,21,15,22,23,19].

These type of equations preferred to model the viscoelasticity and heat conduction equations. The neutral equations
are depending on past and present scenarios along the derivative involved in delay as well as function itself. These features
directs to study fractional neutral impulsive differential equations in many real life applications. The existence results and
qualitative properties of fractional neutral delay differential equations was studied in [24,25,26,27,28,29].

Recently, Hernández and O’regan in [30] introduced a new class of non-instantaneous impulsive differential equations.
In the model presented in [30], the impulsive action start abruptly at certain time and their process continue on a finite
time interval. This non-instantaneous impulsive systems are more suitable to the study of dynamics of evolution processes
in pharmacotheraphy. Existence results of solutions for non-instantaneous impulsive fractional/integer order differential
equations have also been discussed in [31,32,33,34,35,36,28,37,38].
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In this contribution, we study the existence and uniquenessof fractional neutral differential equations with state-
dependent delay subject to non-instantaneous impulsive conditions of the form

si D
α
t (y(t)−g(t,yt)) = A(y(t)+

∫ t

0
k(t − s)y(s)ds)+ f (t,yρ(t,yt )),

t ∈ (si , ti+1], i = 0,1, ...,N (1.1)

y(t) = hi(t,yt), t ∈ (ti ,si ], i = 1, ..,N (1.2)

y0 = φ , (1.3)

whereα ∈ (0,1), φ ∈ B, A : D(A)⊂Y →Y is the infinitesimal generator of aC0-semigroup of bounded linear operator
(S (t))t≥0 defined on a Banach space(Y ,‖ · ‖). The functionsys : (−∞,0] → Y , ys(θ ) = y(s+ θ ), belongs to some
suitable abstract phase spaceB which is described axiomatically, 0= t0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tN ≤ sN ≤ tN+1 = a
are prefixed numbers,ρ : [0,a]×B → (−∞,a], g : [0,a]×B → Y , f : [0,a]×B → Y , hi ∈ C((ti ,si ]×B;Y ) and
k∈ L1

loc(R
+) are appropriate functions.

We consider the Caputo fractional derivative and perturbedresolvent operator to make the concept of the mild solution
more appropriate. We prove the existence and uniqueness of mild solutions of the above problem by utilizing fixed point
theorem for condensing map and contraction mapping principle.

2 Preliminaries

Let the spaceL (Y ,Z ) to denote the bounded linear operators from the Banach spaceY into Z endowed with the norm
‖ · ‖L (Y ,Z ) and we write simplyL (Y ) whenY =Z . Let‖ y‖D=‖ y‖+ ‖Ay‖ where notationD represents the domain
of the operatorA. ConsiderBp(y,Y ) to denote the closed ball with center aty and radiusp in Y . C([0,a];Y ) describes
the space of all the continuous functions from[0,a] into Y with the sup-norm‖ · ‖C([0,a];Y ), andCγ ([0,a];Y ),γ ∈ (0,a)
represents the space formed by all theY -valuedγ-Hölder continuous functions from[0,a] into Y with the norm‖

y ‖Cγ ([0,a];Y )=‖ y ‖C([0,a];Y ) +[|y|]Cγ ([0,a];Y ) where[|y|]Cγ ([0,a];Y ) = supt,s∈[0,a]
t 6=s

‖y(t)−y(s)‖Y

(t−s)γ .

We introduce the spacePC (Y ) of all the functionsy : [0,a]→ Y such thaty(·) is continuous att 6= ti ,y(t
−
i ) = y(ti)

andy(t+i ) exists for everyi = 1, · · · ,N, which is a Banach space with respect to the norm‖y‖PC (Y ) = sups∈[0,a]‖y(s)‖.
For a functiony∈ PC (Y ) andi ∈ {0,1, · · · ,N}, we introduce the function ˜yi ∈C([ti , ti+1];Y ) by

ỹi(t) =

{

y(t), for t ∈ (ti , ti+1],

y(t+i ), for t = ti .
(2.1)

Moreover, forE ⊆ PC (Y ) and i ∈ {0,1, · · · ,N}, we consider the notioñEi for the setẼi = {ỹi : y ∈ E}. We note the
Ascoli-Arzela type criteria as below.

Lemma 1.[16] A set E⊆ PC (Y ) is relatively compact inPC (Y ) if and only if each set̃Ei is relatively compact in
C([ti , ti+1];Y ).

We consider the phase space(B,‖ ·‖B), is a linear space of functionyt mapping from(−∞,0] into Y with respect to
the seminorm‖ · ‖B, which is previously addressed in Hino et al., [39] to examine the infinite delay problem. We assume
the spaceB meets the axioms given below:

(A)If y : (−∞,κ + b] → Y , κ ∈ R, b > 0, is such thaty|[κ ,κ+b] ∈ PC ([κ ,κ +b];Y ) andyκ ∈ B, then for everyt ∈
[κ ,κ +b] the subsequent conditions hold:

(i)yt ∈ B,
(ii)‖y(t)‖ ≤ H‖yt‖B,

(iii) ‖yt‖B ≤ K(t −κ){sup‖y(s)‖ : κ ≤ s≤ t}+M(t − s)‖xκ‖B, whereM,K : [0,∞)→ [1,∞), M is locally bounded,
K is continuous;H > 0 is a constant andK,M,H are independent ofy(·).

(B)B is complete.

Remark.Since the domain ofφ(·) is (−∞,0], we observe that for everyt < 0, φt is well defined.

Next we find out the mild solution of the impulsive initial value problem (1.1)-(1.3). For, first we establish the
equivalent integral equation of (1.1)-(1.3).

The Riemann-Liouville fractional integral of orderα > 0 of a functionu in the spaceLp(0,1), p∈ [1,∞), is the integral

aIα
t u(t) =

1
Γ (α)

∫ t

a
(t − s)α−1u(s)ds.
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The Caputo type fractional derivative of orderα > 0, α ∈ (n−1,n) is defined as

aDα
t u(t) =

1
Γ (n−α)

∫ t

a
(t − s)n−α−1un(s)ds,

where the functionu(t) have absolutely continuous derivatives of order up ton−1.
Also we get the following results by the relation between Caputo fractional derivative and Riemann-Liouville

fractional integral. If the fractional order derivativeDαu, α ∈ (0,1), is integrable, then

aIα
t aDα

t u(t) = u(t)−u(a), (2.2)

and ifu is integrable then

aDα
t aIα

t u(t) = u(t), (2.3)

holds on [1,2].
Suppose thaty∈ PC (Y ) is a solution of the equations (1.1)-(1.3). It follows from equations (2.2) and (2.3), we have

the corresponding fractional integral equations of (1.1)-(1.3) as

y(t) = φ(t), t ∈ (−∞,0], y(t) = h(t,yt), t ∈ (ti ,si ], i = 1, · · · ,N, (2.4)

and

y(t) = hi(si ,ysi )−g(si,ysi )+g(t,yt)+
1

Γ (α)

∫ t

si

(t − s)α−1 f (s,yρ(s,ys))ds

+
1

Γ (α)

∫ t

si

(t − s)α−1[A(y(s)+
∫ s

0
k(s− τ)y(τ)dτ)]ds, (2.5)

for everyt ∈ (si , ti+1] andi = 0, · · · ,N.
Now we make the concept of mild solution for (1.1)-(1.3).
Note that the following perturbed convolution equation

y(t) = (aα +aα ∗ k)∗Ay(t)+ f (t), t ∈ [0,a], (2.6)

has a corresponding resolvent operator(T (t))t≥0 on Y and f ∈ C([0,a];Y ). Here∗ denotes the convolution operator,
aα ∗ y(t) = 1

Γ (α)

∫ t
0(t − s)α−1y(s)ds, whereaα = 1

Γ (α)(t)
α−1, see [12] and [40, Section 1.4].

Definition 1.[40, Definition 1.3] A family(T (t))t≥0 ⊂ L (Y ) of bounded linear operators inY is called a resolvent for
(2.6)[or solution operator for (2.6)] if the subsequent conditions are satisfied.

(S1)T (0) = I andT (t) is strongly continuous onR+;
(S2)T (t) commutes with A, and AT (t)y= T (t)Ay for every y∈ D and t≥ 0;
(S3)The resolvent equation holds

T (t)y= y+aαA∗T (t)y+ k∗aαA∗T (t)y, for every y∈ D , t ≥ 0.

Definition 2.[40, Definition 1.4] A resolvent operatorT (t) for equation (2.6) is said to be differentiable, ifT (·)y ∈
W 1,1([0,∞);Y ) for every y∈ D and there isφA ∈ L1

loc([0,∞)) with ‖T ′(t)y‖ ≤ φA(t)‖y‖D , a.e. on[0,∞), for every
u∈ D .

Definition 3.[40, Definition 1.1] A function y∈C([0,a];Y ) is called a mild solution of(2.6) on [0,a] if (aα +aα ∗k)∗y∈
D(A) for all t ∈ [0,a] and

y(t) = A(aα +aα ∗ k)∗ y(t)+ f (t), t ∈ [0,a].

The next lemma follows from [12, Lemma 1.1].

Lemma 2.Suppose (2.6) admits a differentiable resolventT (t).

(i)If y(·) is a mild solution of (2.6) on [0,a], then the function t→
∫ t

0 T (t − s) f (s)ds is continuously differentiable on
[0,a], and

y(t) =
d
dt

∫ t

0
T (t − s) f (s)ds, t ∈ [0,a],

(ii)If f ∈C([0,a];D) then the function y: [0,a]→ Y defined by

y(t) =
∫ t

0
T

′(t − s) f (s)ds+ f (t), t ∈ [0,a],

is a mild solution of (2.6) on [0,a].
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We consider the following fixed point theorem for the existence results.

Theorem 1.[41, Theorem 4.3.2] Suppose thatY is a Banach space, D is a closed bounded convex subset ofY , A is a
continuous function from D into D with the property that there is a numberϑ such that0≤ ϑ < 1 andα[A(∆)]≤ ϑα[∆ ]
for all ∆ ⊂ D, where

α[∆ ] = inf{ γ > 0 : ∆ can be covered by a finite number of sets having
diameter to larger thanγ}.

Then the set F= {z∈ D : Az= z} is nonempty and compact.

3 Existence and Uniqueness Results

In this section, we prove the existence and uniqueness of mild solution of the fractional differential equation (1.1)-(1.3).

Definition 4.A function y: (−∞,a] → Y is said to be a mild solution of the equation (1.1)-(1.3) on [0,a], if
y0 = φ , yρ(s,ys) ∈ B for all s∈ [0,a] and

∫ t
0(t − s)1−α(y(s)+

∫ s
0 k(s− τ)y(τ)dτ)ds∈ D for all t ∈ (0,a] and

y(t) =







































φ(0)−g(0,φ)+g(t,yt)+
1

Γ (α)

∫ t
0(t − s)α−1 f (s,yρ(s,ys))ds

+ A
Γ (α)

∫ t
0(t − s)α−1(y(s)+

∫ s
0 k(s− τ)y(τ)dτ)ds, t ∈ (0, t1],

hi(si ,ysi )−g(si,ysi )+g(t,yt)+
1

Γ (α)

∫ t
si
(t − s)α−1 f (s,yρ(s,ys))ds

+ A
Γ (α)

∫ t
si
(t − s)α−1(y(s)+

∫ s
0 k(s− τ)y(τ)dτ)ds, t ∈ (si , ti+1],

hi(t,yt), t ∈ (ti ,si ],

φ , t ∈ (−∞,0]

(3.1)

for every i= 1, · · · ,N.

To prove the existence results we assume thatφ is in B and that the functionρ : [0,a]×B → (−∞,a] is continuous. Now
we assume the necessary hypotheses.

(H1)Consider the setQ(ρ−) = {ρ(s,ψ) : (s,ψ) ∈ [0,a]×B, ρ(s,ψ) ≤ 0}. The functiont → φt is well defined from
Q(ρ−) into B and there exists a bounded and continuous function
Jφ : Q(ρ−)→ R such that‖φt‖B ≤ Jφ (t)‖φ‖B, ∀t ∈ Q(ρ−).

(H2) f : [0,a]×B → D is continuous such that
(i)Let y : (−∞,a]→ Y be such thaty0 = φ andy|[0,a] ∈ PC (Y ). The mapt → f (t,yρ(t,yt )) is measurable on[0,a]

and the mapt → f (t,yt ) is continuous onQ(ρ−)∪ [0,a] for all s∈ [0,a].
(ii)For everyt ∈ [0,a], the functionf (t, ·) : B → D is continuous.

(iii)Let mf ∈C([0,a];R+) andW : [0,∞)→ (0,∞) is a non-decreasing function such that‖ f (t,ψ)‖ ≤ m(t)W(‖ψ‖B),
(t,ψ) ∈ [0,a]×B

(iv)There exist a functionL f ∈C([0,a];R+) such that
‖ f (t,yt)− f (t,zt)‖D ≤ L f (t)‖yt − zt‖B.

(H3)The function g ∈ C([0,a] × B;D) and there exists a constantKg and Lg ∈ C([0,a];R+) such that
‖g(t,yt)‖D ≤ Kg(‖yt‖B +1), and‖g(t,yt)−g(t,zt)‖D ≤ Lg(t)‖yt − zt‖B.

(H4)The functionhi ∈C((ti ,si ]×B → D) and there exists a constantKhi andLhi ∈C((ti ,si ];R+) such that‖hi(t,yt)‖D ≤
Khi (‖yt‖B +1), and‖hi(t,yt)−hi(t,zt)‖D ≤ Lhi (t)‖yt − zt‖B for eachi = 1, · · · ,N.

Lemma 3.[16] Let y : (−∞,a]→ Y be such that y0 = φ and y|[0,a] ∈ PC (Y ). Then

‖ys‖B ≤ (Ma+ Jφ
0 )‖φ‖B +Kasup{‖x(θ )‖; θ ∈ [0,max{0,s}]}, s∈ Q(ρ−)∪ [0,a],

where Jφ0 = supt∈Q(ρ−) Jφ (t), Ka = supt∈[0,a] K(t) and Ma = supt∈[0,a]M(t).

Theorem 1.Assume that the hypotheses(H1)−(H4) are satisfied andφ(0)∈D . Then the problem (1.1)-(1.3) has a unique
mild solution ifΩ < 1, where

Ω = Ka max
i={1,··· ,N}

{(|Lhi |C((ti ,si ];R+)+2|Lg|C((si ,ti+1];R+)

+
tα
i+1

αΓ (α)
|L f |C((si ,ti+1];R+)(1+ ‖φA‖L1((si ,ti+1];R+)),

(|Lg|C([0,t1];R+)+
tα
1

αΓ (α)
|L f |C([0,t1];R+))(1+ ‖φA‖L1([0,t1];R+))}.
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Proof.Set Y = {y ∈ PC (Y ) : y(0) = φ(0)} endowed with uniform convergence topology. On the spaceY and by
considering Lemma2(ii), we define the fixed point operatorΓ : Y →Y by

Γ y(t) =















































hi(t, ȳt), t ∈ (ti ,si ],

φ(0)−g(0,φ)+g(t, ȳt)+
1

Γ (α)

∫ t
0(t − s)α−1 f (s, ȳρ(s,ȳs))ds

+
∫ t

0 T ′(t − s)[φ(0)−g(0,φ)+g(s, ȳs)

+ 1
Γ (α)

∫ s
0(s− τ)α−1 f (τ, ȳρ(τ,ȳτ ))dτ]ds, t ∈ [0, t1],

hi(si , ȳsi )−g(si, ȳsi )+g(t, ȳt)+
1

Γ (α)

∫ t
si
(t − s)α−1 f (s, ȳρ(s,ȳs))ds

+
∫ t

si
T ′(t − s)[hi(si , ȳsi )−g(si, ȳsi )+g(s, ȳs)

+ 1
Γ (α)

∫ s
si
(s− τ)α−1 f (τ, ȳρ(τ,ȳτ ))dτ]ds, t ∈ (si , ti+1],

whereȳ : (−∞,a]→ Y is such that ¯y= y andȳ0 = φ on [0,a]. Let y∈Y. From the assumptions ong, f , andhi, we have

∫ t

0
‖T ′(t − s)[φ(0)−g(0,φ)+g(s, ȳs)+

1
Γ (α)

∫ s

0
(s− τ)α−1 f (τ, ȳρ(τ,ȳτ ))dτ]‖ds

≤

∫ t

0
‖T ′(t − s)(φ(0)−g(0,φ)+g(s, ȳs))‖ds

+
1

Γ (α)

∫ t

0
‖T ′(t − s)

∫ s

0
(s− τ)α−1 f (τ, ȳρ(τ,ȳτ ))dτ‖ds

≤

∫ t

0
φA(t − s)‖φ(0)−g(0,φ)+g(s, ȳs)‖Dds

+
1

Γ (α)

∫ t

0
φA(t − s)

∫ s

0
(s− τ)α−1‖ f (τ, ȳρ(τ,ȳτ ))‖Ddτds

≤ ‖φ(0)−g(0,φ)+g(s, ȳs)‖D‖φA‖L1([0,t1];R+)+
‖ f (τ, ȳρ(τ,ȳτ ))‖D

Γ (α)

∫ t

0
φA(t − s)

sα

α
ds

≤ (‖φ(0)−g(0,φ)+g(s, ȳs)‖D +
tα
1

αΓ (α)
‖ f (τ, ȳρ(τ,ȳτ ))‖D )‖φA‖L1([0,t1];R+).

Then from the above inequality results the function
s→ T ′(t − s)(φ(0)−g(0,φ)+g(t, ȳt)+

1
Γ (α)

∫ t
0(t − s)α−1 f (s, ȳρ(s,ȳs))ds)

is integrable on[0, t1] for everyt ∈ [0, t1]. Likewise, we see

∫ t

si

‖T ′(t − s)[hi(si , ȳsi )−g(si, ȳsi )+g(s, ȳs)+

∫ s

si

(s− τ)α−1

Γ (α)
f (τ, ȳρ(τ,ȳτ ))dτ]‖ds

≤

∫ t

si

φA(t − s)‖hi(si , ȳsi )−g(si, ȳsi )+g(s, ȳs)‖Dds

+

∫ t

si

φA(t − s)
1

Γ (α)

∫ s

si

(s− τ)α−1‖ f (τ, ȳρ(τ,ȳτ ))‖Ddτds

≤ (‖hi(si , ȳsi )−g(si, ȳsi )+g(s, ȳs)‖D +
tα
i+1

αΓ (α)
‖ f (τ, ȳρ(τ,ȳτ ))‖D)‖φA‖L1((si ,ti+1];R+).

From this result we get that
s→ T ′(t − s)(hi(si , ȳsi )−g(si, ȳsi )+g(t, ȳt)+

1
Γ (α)

∫ t
si
(t − s)α−1 f (s, ȳρ(s,ȳs)))

is also integrable on[si , t] for all t ∈ (si , ti+1]. This implies thatΓ y∈ PC andΓ is well defined.
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Fory,z∈Y andt ∈ (si , ti+1], i = {1, · · · ,N}, we obtain
‖Γ y(t)−Γ z(t)‖C((si ,ti+1];Y )

≤ ‖hi(si , ȳsi )−hi(si , z̄si )‖D + ‖g(si, ȳsi )−g(si, z̄si )‖D

+‖g(t, ȳt)−g(t, z̄t)‖D +
1

Γ (α)

∫ t

si

‖ f (s, ȳρ(s,ȳs))− f (s, z̄ρ(s,z̄s))‖D

(t − s)1−α ds

+

∫ t

si

φA(t − s)(‖hi(si , ȳsi )−hi(si , z̄si )‖D

+ ‖g(si , ȳsi )−g(si, z̄si )‖D + ‖g(s, ȳs)−g(s, z̄s)‖D)ds

+
1

Γ (α)

∫ t

si

φA(t − s)
∫ s

si

‖ f (τ, ȳρ(τ,ȳτ ))− f (τ, z̄ρ(τ,z̄τ ))‖D

(s− τ)1−α dτds

≤
(

|Lhi |C((ti ,si ];R+)+ |Lg|C((si ,ti+1];R+)

)

‖ȳsi − z̄si‖B + |Lg|C((si ,ti+1];R+)‖ȳt − z̄t‖B

+
1

Γ (α)

∫ t

si

L f (s)

(t − s)1−α ds‖ȳρ(s,ȳs)− z̄ρ(s,z̄s)‖B +
(

|Lhi |C((ti ,si ];R+)‖ȳsi − z̄si‖B

+|Lg|C((si ,ti+1];R+)‖ȳsi − z̄si‖B + |Lg|C((si ,ti+1];R+)‖ȳt − z̄t‖B

)

‖φA‖L1((si ,ti+1];R+)

+
1

Γ (α)

∫ t

si

φA(t − s)
∫ s

si

L f (τ)
(s− τ)1−α ‖ȳρ(τ,ȳτ)− z̄ρ(τ,z̄τ)‖Bdτds

≤ Ka(|Lhi |C((ti ,si ];R+)+2|Lg|C((si ,ti+1];R+)+
tα
i+1

αΓ (α)
|L f |C((si ,ti+1];R+))

×(1+ ‖φA‖L1((si ,ti+1];R+))‖y− z‖Y.

Proceeding as above, we obtain that

‖Γ y(t)−Γ z(t)‖C([0,t1];Y ) ≤ Ka(|Lg|C([0,t1];R+)+
tα
1

αΓ (α)
|L f |C([0,t1];R+))

×(1+ ‖φA‖L1([0,t1];R+))‖y− z‖Y,

and

‖Γ y(t)−Γ z(t)‖C((ti ,si ];Y ) ≤ Ka|Lhi |C((ti ,si ];R+)‖y− z‖Y.

From the above results we get

‖Γ y(t)−Γ z(t)‖Y ≤ Ω‖y− z‖Y.

SinceΩ < 1, this shows thatΓ (·) is a contraction map and from the contraction mapping principle there exists a unique
mild solution for the equations (1.1)-(1.3).

In the accompanying theorem we prove the existence results of a mild solution via fixed point technique for condensing
operators. For that we require the following lemma.

Lemma 4.[42] If f ∈ C([0,a];D) and F : [0,a] → Y is the function defined by F(t) = 1
Γ (α)

∫ t
0

f (s)
(t−s)1−α ds, then F∈

Cα([0,a];D) and

[|F|]Cα ([0,a];D) ≤
2

αΓ (α)
‖ f ‖C([0,a];D) .

Theorem 2.Assume that(H1)− (H4) are satisfied,T (t) is compact for all t> 0, φ(0) ∈ D , and there exist a constant Kφ
such that‖φ(0)‖D ≤ Kφ‖φ‖B. If

[(Khi +2Kg)Ka+
tα
i+1‖mf ‖

αΓ (α) limr→∞ sup1
r W(Kar)](1+ ‖φA‖L1((si ,ti+1];R+))< 1,

[KgKa+
tα
1

αΓ (α)‖mf ‖ limr→∞ sup1
r W(Kar)](1+ ‖φA‖L1([0,t1];R+))< 1,

then there exists a mild solution of (1.1) - (1.3).
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Proof.Chooser > 0 such that

((Khi +2Kg)(Kas+Ma‖φ‖B)+
tα
i+1

αΓ (α)
‖mf ‖C((si ,ti+1];R+)W(Kas

+(Ma+ Jφ
0 )‖φ‖B))(1+ ‖φA‖L1((si ,ti+1];R+))≤ s,

and

((Kφ +Kg)‖φ‖B +Kg(Kas+Ma‖φ‖B)+
tα
1

αΓ (α)
‖mf ‖C([0,t1];R+)W((Ma

+Jφ
0 )‖φ‖B +Kas))(1+ ‖φA‖L1([0,t1];R+))≤ s,

for all s≥ r.

On the spaceY = {y∈ PC ([0,a];Y ) : y(0) = φ(0)} endowed with a uniform convergence norm. LetΓ : Br(0,Y)→
Br(0,Y) be the operator considered as in the proof of Theorem1. Arguing as in the proof of Theorem1, we can show that
Γ is well defined. Next, we prove thatΓ is a condensing map fromBr(0,Y) into Br(0,Y).

First, we show that there existsr > 0 such thatΓ (Br(0,Y))⊂ Br(0,Y).
Let y∈ Br(0,Y). For i = 1, · · · ,N, t ∈ (si , ti+1] we get

‖Γ y(t)‖ ≤ ‖hi(si , ȳsi )‖D + ‖g(si, ȳsi )‖D + ‖g(t, ȳt)‖D +
1

Γ (α)

∫ t

si

‖ f (s, ȳρ(s,ȳs))‖D

(t − s)1−α ds

+

∫ t

si

φA(t − s)(‖hi(si , ȳsi )‖D + ‖g(si, ȳsi )‖D + ‖g(s, ȳs)‖D )ds

+
1

Γ (α)

∫ t

si

φA(t − s)
∫ s

si

‖ f (τ, ȳρ(τ,ȳτ ))‖D

(s− τ)1−α dτds

≤ ((Khi +Kg)(‖ȳsi‖B +1)+Kg(‖ȳt‖B +1))(1+ ‖φA‖L1((si ,ti+1];R+))

+
1

Γ (α)

∫ t

si

mf (s)W(‖ȳρ(s,ȳs)‖B)

(t − s)1−α ds

+
1

Γ (α)

∫ t

si

φA(t − s)
∫ s

si

mf (τ)W(‖ȳρ(τ,ȳτ )‖B)

(s− τ)1−α dτds

≤ [(Khi +2Kg)(Kar +Ma‖φ‖B)+
tα
i+1

αΓ (α)
‖mf‖C((si ,ti+1];R+)

×W(Kar +(Ma+ Jφ
0 )‖φ‖B)](1+ ‖φA‖L1((si ,ti+1];R+)),

which implies that‖Γ y(t)‖C((si ,ti+1]) ≤ r for all i = 1, · · · ,N. In the similar way we can proceed as fort ∈ [0, t1],

‖Γ y(t)‖ ≤ ‖φ(0)‖D + ‖g(0,φ)‖D + ‖g(t, ȳt)‖D +
1

Γ (α)

∫ t

0

‖ f (s, ȳρ(s,ȳs))‖D

(t − s)1−α ds

+

∫ t

0
φA(t − s)(‖φ(0)‖D + ‖g(0,φ)‖D + ‖g(s, ȳs)‖D)ds

+
1

Γ (α)

∫ t

0
φA(t − s)

∫ s

0

‖ f (τ, ȳρ(τ,ȳτ ))‖D

(s− τ)1−α dτds

≤ (Kφ +Kg)‖φ‖B +Kg‖ȳt‖B +
tα
1

αΓ (α)
‖mf ‖C([0,t1];R+)W(‖ȳρ(s,ȳs))‖B)

+((Kφ +Kg)‖φ‖B +Kg‖ȳt‖B)‖φA‖L1([0,t1];R+)

+
1

Γ (α)

∫ t

0
φA(t − s)

∫ s

0

‖mf ‖C([0,t1];R+)W(‖ȳρ(s,ȳs))‖B

(s− τ)1−α dτds

≤

(

(Kφ +Kg)‖φ‖B +Kg(Kar +Ma‖φ‖B)+
tα
1

αΓ (α)
‖mf ‖C([0,t1];R+)

×W((Ma+ J0
φ )‖φ‖B +Kar)

)

(1+ ‖φA‖L1([0,t1];R+))

≤ r.
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On the other hand, from the properties of functionhi(·) we easily see that, fort ∈ (si , ti ]

‖Γ y(t)‖C((ti ,si ];R+) ≤ Khi (Kar +Ma‖φ‖B)≤ r.

From the above inequalities, we infer that‖Γ y(t)‖Y ≤ r, andΓ has values inBr(0,Y).
Next, we consider the decompositionΓ = ∑3

j=1Γ j where

Γ 1y(t) =



























hi(t, ȳt), t ∈ (ti ,si ], i ≥ 1,
hi(si , ȳsi )−g(si, ȳsi )+g(t, ȳt)

+
∫ t

si
T ′(t − s)(hi(si , ȳsi )−g(si, ȳsi )+g(s, ȳs))ds, t ∈ (si , ti+1], i ≥ 1,

φ(0)−g(0,φ)+g(t, ȳt)+
∫ t
0 T ′(t − s)(φ(0)−g(0,φ)+g(s, ȳs))ds, t ∈ [0, t1],

0, otherwise,

Γ 2y(t) =

{

1
Γ (α)

∫ t
si
(t − s)α−1 f (s, ȳρ(s,ȳs))ds, t ∈ (si , ti+1], i ≥ 0,

0, otherwise,

Γ 3y(t) =

{

1
Γ (α)

∫ t
si
T ′(t − s)

∫ s
si
(s− τ)α−1 f (τ, ȳρ(τ,ȳτ ))dτds, t ∈ (si , ti+1], i ≥ 0,

0, otherwise.

We consider the subsequent proof into the following steps.

Step 1.The mapΓ 1 is a contraction onBr(0,Y).
Let y,z∈ Br(0,Y). Fort ∈ (si , ti+1], i = 1, · · · ,N, it is easy to see that

‖Γ 1y−Γ 1z‖C((si ,ti+1];R+) ≤ Ka(Khi +2Kg)‖y− z‖Y(1+ ‖φA‖L1((si ,ti+1];R+)),

For t ∈ (ti ,si ], i = 1, · · · ,N , ‖Γ 1y−Γ 1z‖C((ti ,si ];R+) ≤ KaKhi‖y− z‖Y.

For t ∈ [0, t1], ‖Γ 1y−Γ 1z‖C([0,t1];R+) ≤ KaKg‖y− z‖Y(1+ ‖φA‖L1([0,t1];R+))
which implies that

‖Γ 1y−Γ 1z‖Y ≤ max
{i=1,··· ,N}

{Ka(Khi +2Kg)(1+ ‖φA‖L1((si ,ti+1];R+)),

KaKg(1+ ‖φA‖L1([0,t1];R+))}‖y− z‖Y,

since

max
{i=1,··· ,N}

{Ka(Khi +2Kg)(1+ ‖φA‖L1((si ,ti+1];R+)), KaKg(1+ ‖φA‖L1([0,t1];R+))} < 1.

HenceΓ 1 is a contraction onBr(0,Y).

Next, we show that the mapsΓ 2 andΓ 3 are completely continuous onBr(0,Y). Consider the constantr1 defined by
r1 = ‖mf ‖C((si ,ti+1];R+)W((Ma+ Jφ

0 )+Kar). We note that‖ f (s, ȳρ(s,ȳs))‖ ≤ r1 for y∈ Br(0,Y) and alls∈ (si , ti+1].

Step 2.The mapΓ 2 is completely continuous onBr(0,Y).
From the properties of the functionf (·) it is easy to see thatΓ 2 is continuous. Next, we show thatΓ 2 is a compact operator
onBr(0,Y).
From Lemma4 we have

‖Γ 2y(t +h)−Γ 2y(t)‖ ≤
2r1

αΓ (α)
hα

for all y ∈ Br(0,Y), which shows thatΓ 2Br(0,Y) is equicontinuous on(si , ti+1], and this result is obvious whent ∈

(ti ,si ], i = 1, · · · ,N. Hence[ ˜Γ 2Br(0,Y)]i is an equicontinuous subset ofC([ti , ti+1];Y ).
On the other hand, we show that the set{Γ 2y(s) : y∈ Br(0,Y),s∈ [si , ti+1]} is relatively compact inY .

Let si < ε < ti+1, i = 1, · · · ,N. Consider [41, Lemma II.1.3] the mean value theorem for the Bochner integral, for y ∈
Br(0,Y), andε ≤ t ≤ ti+1, we see that

Γ 2y(t) =
1

Γ (α)

∫ t−ε

t

f (s, ȳρ(s,ȳs))

(t − s)1−α ds+
1

Γ (α)

∫ t−ε

si

f (s, ȳρ(s,ȳs))

(t − s)1−α ds

∈ B r1εα
αΓ (α)

(0,Y )+
(t − ε − si)

Γ (α)
co((t − ε)1−α f (s, ȳρ(s,ȳs)) : s∈ [si , ti+1]).
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Since the mapic is compact (see [12, Lemma 2.2]) andf ∈C([0,a]×B;D), from the above we assert that

{Γ 2y(s) : y∈ Br(0,Y),s∈ [ε, ti+1]} ⊂ B r1εα
αΓ (α)

(0,Y )+Kε ,

whereKε is a compact subset ofY . Moreover,

{Γ 2y(s) : y∈ Br(0,Y),s∈ [si ,ε]} ⊂ B r1εα
αΓ (α)

(0,Y ),

Hence we find that

{Γ 2y(s) : y∈ Br(0,Y),s∈ [si , ti+1]} ⊂ B r1εα
αΓ (α)

(0,Y )∪ (B r1εα
αΓ (α)

(0,Y )+Kε),

is relatively compact inY , since r1εα

αΓ (α) → 0 asε → 0. It follows thatΓ 2 is relatively compact.

Step 3.The mapΓ 3 is completely continuous. Now we prove that{Γ 3y(t) : y∈ Br(0,Y)} is relatively compact inY for
all t ∈ [si , ti+1], i ≥ 0.
Let si ≤ t ≤ ti+1 and r2 = ‖mf ‖C((si ,ti+1];R+)W((Ma + Jφ

0 ) +Kar)‖φA‖L1((si ,ti+1];R+). From step 2, we know that the set

F̄y = {Fy(s) : s∈ (si , ti+1],y∈ Br(0,Y)} is relatively compact inY , whereFy(s) = 1
Γ (α)

∫ t
si
(t − s)α−1 f (s, ȳρ(s,ȳs))ds.

If y∈ Br(0,Y), using mean value theorem presented in [41, Lemma II.1.3] for the Bochner integral we get

Γ 3y(t) =
∫ t−ε

si

T
′(t − s)Fy(s)ds+

∫ t

t−ε
T

′(t − s)Fy(s)ds

∈ Br2 +(t− ε)co({T ′(s)x : s∈ [ε, t],x∈ F̄y}),

and hence{Γ 3y(t) : y∈ Br(0,Y)} ⊂ Br2 +Kε , whereKε is compact andr2 → 0 asε → 0.
Thus the set is relatively compact inY .

Further we show that the map[ ˜Γ 3Br(0,Y)]i , i = 1, · · · ,N is an equicontinuous subset ofC([ti , ti+1];Y ).
The proof is trivial on(ti ,si ]. Assumet ∈ (si , ti+1). From Lemma4, for y∈ Br(0,Y) and 0< l < ε such thatt + l ≤ ti+1,
we have

‖Γ 3y(t + l)−Γ 3y(t)‖= ‖

∫ t+l

si

T
′(t + l − s)Fy(s)ds−

∫ t

si

T
′(t − s)Fy(s)ds‖

≤
∫ l

si

φA(t + l − s)‖Fy(s)‖Dds+
∫ t

0
φA(t)‖Fy(t + l − s)−Fy(t − s)‖Dds

+

∫ si

0
φA(t − s)‖Fy(s)‖Dds

≤
r1(t − si)

α

αΓ α

∫ l

si

φA(t + l − s)ds+
∫ t

0
φA(t)[‖Fy‖]Cα ((si ,ti+1];D)l

αds

+
r1(t − s)α

αΓ (α)

∫ si

0
φA(t − s)ds

≤
r1tα

i+1

αΓ (α)

(

∫ l

si

φA(t + l − s)ds+
∫ si

0
φA(t − s)ds

)

+
2r1lα

αΓ (α)
‖φA‖L1((si ,ti+1])

,

then it follows thatΓ 3Br(0,Y) is right equicontinuous att ∈ (si , ti+1). From the similar argument we can say that
Γ 3Br(0,Y) is left continuous att ∈ (si , ti+1] and right equicontinuous atsi . Hence,Γ 3Br(0,Y) is a equicontinuous map.
Conclude from the above steps and Lemma1 the operatorsΓ 2 andΓ 3 are completely continuous andΓ 1 is contraction.
Hence it shows thatΓ is a condensing operator and followed from Theorem1 we have that there exists a at least one
mild solution of the problem (1.1)-(1.3).

4 Application

Consider the spaceY := L2([0,π ]) and letA be defined byAx= x′′ with domainD consist of set of ally andy′′ ∈ Y ,
such thaty(0) = y(π) = 0. (S (t))t≥0 is the analytic semigroup onY which is generated by the operatorA.

The operatorA has discrete spectrum with eigenvalues of the form−n2, n ∈ N and the corresponding normalized
eigenfunctions given byyn(η) = ( 2

π )
1/2sin(nη). Further, for ally∈ Y and everyt > 0,S (t)y= ∑∞

n=1e−n2t
< y,yn > yn,
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also the set{yn : n∈ N} is an orthonormal basis forY . The semigroup(S (t))t≥0 is a uniformly bounded and compact.
R(λ ,A) = (λ −A)−1 is a compact operator for everyλ ∈ ρ(A).

We know that the following integral equation

y(t) =
1

Γ (α)

∫ t

0
(t − s)α−1(1+(1∗ k))(t− s)Ay(s)ds, t ≥ 0,

has a corresponding analytic resolvent operator(T (t))t≥0 onY which is given by

T (t) =

{

I , t = 0,
1

2π i

∫

Γδ ,θ
eλ t( 1

λ (1− (1+ k̂(λ ))λ−αA))−1dλ , t ≥ 0,

whereΓδ ,θ represents a contour consisting of the rays{δeiν : δ ≥ 0} and{δe−iν : δ ≥ 0} for someν ∈ (π ,π/2), see [40].
Next, we consider the fractional neutral differential equations with state delay and the non-instantaneous impulsive

conditions are given by

∂ α

∂ tα

(

y(t,η)−
∫ t

−∞
a1(s− t)y(s,η)ds

)

=
∂ 2

∂ t2

(

y(t,η)−
∫ t

0
k(t − s)y(s,η)ds

)

+

∫ t

−∞
a2(s− t)x(s− ς1(t)ς2(‖u(t)‖),η)ds, t ∈ [0,a], η ∈ [0,π ] (4.1)

y(t,0) = y(t,π) = 0, t ∈ [0,a], (4.2)

y(τ,η) = φ(τ,η), τ ≤ 0,φ ∈ B = PC0×L2([0,a];Y ), (4.3)

y(t,η) =
∫ t

−∞
a3(s− t)y(s,η)ds, t ∈ (ti ,si ], i = 1, · · · ,N, (4.4)

for (t,η) ∈ [0,a]× [0,π ], 0= t0 = s0 < t1 ≤ s1 < · · ·< tN ≤ sN < tN+1 = a are prefixed real numbers,k∈ L1(R).
To study this system, we suppose thatςi : [0,∞) → [0,∞), i = 1,2 are continuous functions and we impose the

subsequent conditions

–The functiona j ∈C(R;R), j = 1,2,3,

Lg =
(

∫ 0
−∞ a2

1(s)/g(s)
)1/2

< ∞, L f =
(

∫ 0
−∞ a2

2(s)/g(s)
)1/2

< ∞, andLhi =
(

∫ 0
−∞ a2

3(s)/g(s)
)1/2

< ∞.

Under these conditions, we can define the maphi : (ti ,si ]×B → Y , g, f : [0,a]×B → Y , ρ : I ×B →R,, by

ρ(s,ψ) = s−ρ1(s)ρ2(‖ψ(0)‖),

f (t,ψ)(η) =
∫ 0

−∞
a2(s)ψ(s,η)ds,

g(t,ψ)(η) =
∫ 0

−∞
a1(s)ψ(s,η)ds,

hi(t,ψ)(η) =
∫ 0

−∞
a3(s)ψ(s,η)ds, i = 1, · · · ,N.

From these conditions we can represent the equations (4.1)-(4.4) by the abstract fractional impulsive problem (1.1)-(1.3).
Furthermore, the functionsf ,g,hi , are bounded linear operators with‖ f‖L (B,Y ) ≤ L f , ‖g‖L (B,Y ) ≤ Lg and
‖hi‖L (B,Y ) ≤ Lhi , i = 1, · · · ,N.

We can prove thaty∈ PC (Y ) is a mild solution of (4.1)-(4.4) if y(·) is a mild solution of the corresponding abstract
fractional impulsive problem (1.1)-(1.3). Under the above assumptions, the equations (4.1)-(4.4) has at least one mild
solution in the view of Theorem2 and the uniqueness of the solution verified from the Theorem1.

5 Conclusion

In this study, we make the concept of mild solution for fractional impulsive differential equations more appropriate by
using the perturbed resolvent operator technique. By utilizing the fixed point theorem we established the existence results
of non-instantaneous impulsive differential equations with sate-dependent delay. The non-instantaneous impulsive
systems are more suitable to the study of dynamics of evolution processes in pharmacotheraphy. The natural
characteristics of fractional derivatives and neutral type equations considered with non-instantaneous impulses are more
effective to describe the real world phenomena.
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