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1 Introduction

Fractional impulsive differential equations originate several field of applied mathematics and science. Abstract
fractional functional differential equations have redgmiroved to be valuable tools for the description of memory
processes and hereditary properties of various materiadssgstems. For detailed study of fractional differential
equations we refer the books P, 3], and the papergy5, 6].

The study of impulsive differential equations have morergtbn in recent years due to its applications. Most of the
research papers dealt with existence of solutions for @netvith instantaneous impulses, see for more detai& 9,
10,11]. In[12] E. Herenandez et al. quoted that many authors used thepbotmild solutions inappropriately using the
semigroup theory for fractional differential equations.make the concept of mild solution more appropriate, hadrka
abstract differential equations with fractional derivas based on the well developed theory of resolvent operétor
integral equations.

Fractional functional differential equations with statependent delay viewed frequently in applications as mofiel
equations and several authors have studied about thesefiygapiations 13,14,15,16,17,18,19]. Also the theory of
abstract neutral differential equations arise in manysaofapplied mathematics and for this reason, the study df suc
equations have been treated in the literature recentlj28de, 21,15,22,23,19].

These type of equations preferred to model the viscoelystind heat conduction equations. The neutral equations
are depending on past and present scenarios along thettlerimgolved in delay as well as function itself. These teat
directs to study fractional neutral impulsive differeh@guations in many real life applications. The existenseits and
qualitative properties of fractional neutral delay diffetial equations was studied i24,25,26,27,28,29].

Recently, Hernandez and O’regan 8f] introduced a new class of non-instantaneous impulsiferifitial equations.
In the model presented i18(], the impulsive action start abruptly at certain time anelitiprocess continue on a finite
time interval. This non-instantaneous impulsive systerasreore suitable to the study of dynamics of evolution preess
in pharmacotheraphy. Existence results of solutions foringtantaneous impulsive fractional/integer ordered#htial
equations have also been discusse®i32,33,34,35,36,28,37,39].
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In this contribution, we study the existence and uniquemédsactional neutral differential equations with state-
dependent delay subject to non-instantaneous impulsivéittons of the form

SDF(Y(0) gt ) = A0+ [ Kt~ 9Y(93 + 1t Ypiy ).
te(s,ti+a],i=0,1,...,N (1.1)
y(t) = hi(t,w), te(t,s],i=1.,N (1.2)
Yo = @, (1.3)

wherea € (0,1), pe B,A: Z(A) C % — % is the infinitesimal generator of@&-semigroup of bounded linear operator
(- (t))>0 defined on a Banach spa¢#/, || - ||). The functionsys : (—,0] — %/, ys(6) = y(s+ ), belongs to some
suitable abstract phase spagewhich is described axiomatically,Otg =g <t1 <s<tr <--- <ty <Ny <tny1=a
are prefixed number® : [0,a] x B — (—w,a], g: [0,a) x Z = %, f:]0,a x B — %, h € C((ti,s] x B, %) and
k e L} (R) are appropriate functions.

We consider the Caputo fractional derivative and perturbsdlvent operator to make the concept of the mild solution
more appropriate. We prove the existence and uniquenesi$otutions of the above problem by utilizing fixed point
theorem for condensing map and contraction mapping piicip

2 Preliminaries

Let the space”Z (%, Z) to denote the bounded linear operators from the Banach ggacs® 2 endowed with the norm
||| (2 2) and we write simplyZ (%) when? = . Let||y | =] y | + || Ay|| where notatior# represents the domain
of the operatoA. ConsideBy(y,#") to denote the closed ball with centeryaand radiusp in #. C([0,a]; %) describes
the space of all the continuous functions fr¢fna] into %" with the sup-normj| - [|c(j0,a;;%), andCY([0,a]; %),y € (0,a)

represents the space formed by all thevalued y-Holder continuous functions fror0,a] into # with the norm||
IyO-y(S)llz

Y llev(oarz) =Y lle(oaz) +I¥ller(o.a:2) Where[|Ylley(o.a2) = SUR scjo.a) = =7
t;és
We introduce the spac& ¢’ (#') of all the functionsy : [0,a] — % such thaty(-) is continuous at # t;, y(t7) = y(t;)
andy(t;") exists for every = 1,--- N, which is a Banach space with respect to the nfyihy (s = SURc (0.4 IY(S) |-
For a functiory € 2% (#') andi € {0,1,--- ,N}, we introduce the functiop & C({ti,ti+1]; %) by

= Jy(t),  forte (t,tiiq],
y'(t)_{y(ti+), fort:ti.+ (2.1)

Moreover, forE C 2% (#) andi € {0,1,--- ,N}, we consider the notioF; for the setf; = {¥; : y € E}. We note the
Ascoli-Arzela type criteria as below.

Lemma 1[16] A set EC 2% (¥) is relatively compact in?%' (%) if and only if each sekE; is relatively compact in
C([ti,tia]; ).

We consider the phase spdc#, || - || »), is a linear space of function mapping from(—co, 0] into % with respect to
the seminornj| - || , which is previously addressed in Hino et aR9[to examine the infinite delay problem. We assume
the space” meets the axioms given below:

(A)If y: (=0, Kk +b] = %, kK €R, b>0, is such thay| x4p € PEC([K,K +b];#) andy, € %, then for everyt €
[k, K + b] the subsequent conditions hold:
(e € 4,
(W) Y < Hllytll2,
(i) ||yl 2 < Kt —k){sup|ly(s)| : K <s<t}+ M(t—9)||X« ||, whereM,K : [0,00) — [1,00), M is locally bounded,
K is continuousH > 0 is a constant anid, M, H are independent of(-).
(B)% is complete.

RemarkSince the domain of(-) is (—o, 0], we observe that for evety< 0, @ is well defined.

Next we find out the mild solution of the impulsive initial v problem {.1)-(1.3). For, first we establish the
equivalent integral equation of (1)-(1.3).
The Riemann-Liouville fractional integral of order> 0 of a functioruin the spac&P(0,1), p € [1, ), is the integral

alfu(t) = % /at (t—9) % u(s)ds
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The Caputo type fractional derivative of order- 0, a € (n— 1,n) is defined as

aDf u(t) = ﬁ/ﬁt(t—s)nalun@)ds

where the functiomi(t) have absolutely continuous derivatives of order up tol.
Also we get the following results by the relation between @apfractional derivative and Riemann-Liouville
fractional integral. If the fractional order derivati?é'u, a € (0,1), is integrable, then

alf'aDr'u(t) = u(t) — u(a), (2.2)
and ifuis integrable then

aD{fal ' u(t) = u(t), (2.3)
holds on L, 2].

Suppose that € 2% (%) is a solution of the equation&.()-(1.3). It follows from equationsZ.2) and @.3), we have
the corresponding fractional integral equationslof)-(1.3) as

y(t) = q0(t), te (_0070]5 y(t) = h(tvyt) te (tlv ] i=1--,N, (24)
and
1 t a-1
y(t) = hi(s,ys)—@J(s,ys)+<.>J(t,yt)+W[S (t=9)"""f(SYp(sys))dS
+%L (t—9 +/ k(s— T)y(r)d1)]ds (2.5)
for everyt € (s,ti+1] andi = -,N.

Now we make the concept of mild solution fdr.)-(1.3).
Note that the following perturbed convolution equation

y(t) = (aa +aq * k)« Ay(t) + f(t), t € [0,al, (2.6)
has a corresponding resolvent operdtér(t) )i>o on % and f € C(]0,a]; #). Herex denotes the convolution operator,
aa*Y(t) = g J5(t—s)%1y(s)ds whereay = (1)t see 12 and [40, Section 1.4].

Definition 1.[40, Definition 1.3] A family(.7 (t) )~ C -Z (%) of bounded linear operators it# is called a resolvent for
(2.6)[or solution operator for 2.6)] if the subsequent conditions are satisfied.

(S1)7(0) =1 and 7 (t) is strongly continuous oR  ;
(S2)7 (t) commutes with A, and&(t)y = 7 (t)Ay for every ye 2 andt> 0;
(S3)The resolvent equation holds

TH)y=y+asAx T (t)y+k*agAx T (t)y, foreveryye 2,1 >0.

Definition 2.[40, Definition 1.4] A resolvent operatoﬁ( ) for equation R.6) is said to be differentiable, if7 (-)y €
w11([0,0);%) for every ye 2 and there isg € L ([0,0)) with [|.77(t)y] < @a(t)|lyll2, a.e. on[0,), for every
ue 9.

Definition 3.[40, Definition 1.1] A function ye C([0,a]; %) is called a mild solution 0f2.6) on [0, a] if (ag +aq *k) xy €
2(A) forallt € [0,a] and

y(t) = A(aa +aq xK) xy(t) + f(t), t € [0,a].
The next lemma follows froml2, Lemma 1.1].
Lemma 2 Supposed.6) admits a differentiable resolverf (t).

()If y(-) is a mild solution of 2.6) on [0,a], then the function t» fé T (t —s)f(s)ds is continuously differentiable on
[0,a], and

dt/ﬁt— (s)ds t € [0,al,
(iNlf f € C([0,a]; 2) then the function y[0,a] — % defined by

/9/t_ s+ f(t), t € [0,a],

is a mild solution of 2.6) on [0, a].
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We consider the following fixed point theorem for the exisenesults.

Theorem 1[41, Theorem 4.3.2] Suppose thé&t is a Banach space, D is a closed bounded convex subggt éfis a
continuous function from D into D with the property that taés a numbet® such thal < § < landa[A(A)] < Ja[A]
forall A c D, where
a[A] =inf{ y> 0: A can be covered by a finite number of sets having
diameter to larger thary}.
Then the set == {ze D : Az= z} is nonempty and compact.

3 Existence and Uniqueness Results

In this section, we prove the existence and uniqueness dfsulltion of the fractional differential equatiob.{)-(1.3).

Definition 4.A function y: (—w,a] — Z// is said to be a mild solution of the equatiod.D-(1.3) on [0,a], if
Yo =@, Yp(sys) € Zforallse [0, a] and [§(t —9)1%(y(s) + Jsk(s— T)y(T)dT)dse Z for allt € (0,a] and

@(0) — 9(0, @) + 9(t,; ) + 157 Jo(t =9 (S.Yp(sys) S
g Jot =97~ (()Ho ( 1)y(r)dr)ds t € (0,t1],
y(t) = hi(sXys}t—g(s gsl)+g(t YO + iy Js (= )“‘1f(s,y,_><§ys>>ds 3.1)
) Js (L= (y(s) + Jok(s— )y(T)dT)dstE(s,t|+1],
hi(t,w), t € (ti,s],
¢7t€ (_007 ]
foreveryi=1,---  N.

To prove the existence results we assumedhatin % and that the functiop : [0,a] x Z — (—,a] is continuous. Now
we assume the necessary hypotheses.

(Hy)Consider the se2(p~) = {p(s,¢) : (s,¢) € [0,a] x A, p(s,) < 0}. The functiont — @ is well defined from

2(p7)into# and there exists a bounded and continuous function

3¢: 2(p~) — R such that| @] < 3°(t)|@ll.5, Yt € 2(p").
(H2)f : [0,a] x #Z — Z is continuous such that
(Lety: (—o0,a] — # be such thayo = @ andyljg y € Z€(#). The magt — f(t,Y,y)) is measurable ofd, a]
and the map — f(t,y) is continuous or2(p~—) U0, a] for all s [0, ).
(iFor everyt € [0,a], the functionf (t,-) : Z — & is continuous.
(iii)Let m¢ € C([0,a];R™) andW : [0,) — (0, ) is a non-decreasing function such thatt, ¢)| < mt)W(||@] »),
(t.y) € [0.8] x #
(iv)There exist a functioh s € C([0,a];R") such that
If(t.y) — F(t,2)ll2 < L ()]t — |-
(H3)The function g € C([0,a] x #4;27) and there exists a constaf{y and Ly € C([0,a;R*) such that
lgt.y0)llo < Kol + 1), andllgt, ) —a(t.2)][# < Lo(t)lly: — zl5.
(H4)The functionh; € C((tj,s] x Z — 2) and there exists a constdfyf andLy, € C((t., ;RT) such that|hi(t,y)] o <
Ky (Iytll 2 + 1), and|[hi(t, yt) — hi(t,2)[|2 < Ln (t) [ — zl| for eachi = 1,---N.

Lemma 3[16] Lety: (—«,a] — % be such thaty= @ and Yo q € Z%€(#). Then
1Ysllz < (Ma+35)[19]l 5 + Kasup{[[x(8) ; 8 € [0,max{0,s}]}, s€ 2(p~)U[0,a],
where § = SURc 5, J?(t), Ka = SURc(g4 K(t) and My = supc(g 4 M(t).
Theorem 1Assume that the hypothesél ) — (H4) are satisfied ang(0) € 2. Then the problenil(1)-(1.3) has a unique
mild solution ifQ < 1, where
Q=Ka,_max {(Iwlo( i) +2llaleqs sz

ta
*ar (@ et smn 4 1allgs s m):

G

(|Lg|C([0,t1];R+) + ﬁm) Lt |C([o,t1];R+))(1+ ||¢AHL1([O7I1];R+))}-
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ProofSetY = {y € 2% (%) : y(0) = ¢(0)} endowed with uniform convergence topology. On the spécand by
considering Lemmaii), we define the fixed point operatér: Y — Y by

hi(t, ye), t e (t,s].

¢(0) —9(0,9) +9(t %) + gy Jolt =9 (S Vp(sz))ds
+Jo 7' (t—9)[9(0) — (0, <p)+g(s ¥s)

Fy(t) =<+ Jo(s— 1) (1,1 ))dTlds t € [0,ty],
hi(s.Ys) —9(S.Ys) +9(t.Y0) + 5 J5 (t = 9)7 (8. Vp(sye))dS
+ 2 Tt -9)hi(s. ) — g(s,ys>+g(sys)

+ ey J5 (5= DO (T Yp(rg)dT]ds te (s, tival,

wherey: (—,a] — % is such thay =y andyp = @ on [0, a]. Lety € Y. From the assumptions @pf, andh;, we have

[ 17/~ 91000~ 00.0) + 6870 + o [ (5= 0 (. Tpteg s
/W’t— (0)-9(0.9)+ g(s.3) |ds
/W/t— ) [[(5= 0% H (T Gpiegz )Tl s
/qut— )19(0) ~ (0. 9) +g(s.53) s
Fi [ it [ (6= DT I Fpieg) s

(T Yp(r50) |2 ch
< 100) - 50.0) + s o Alxauen) + o [ an(t-95 ds
a

< (ll9(0) —9(0,9) +9(s ¥s)[|2 + ,El( )Ilf( o) |21l L1 oy m+)-

Then from the above inequality results the functlon
s— 7'(t—)(®(0) — 9(0, @) +9(t,3) + 7 Jo(t —9)* (S, Yp(sye))d9)
is integrable orf0,t;] for everyt € [0, t1]. leeW|se we see

/ s— .l-cr 1
L1769 (6.5) - 08,5 + 070 + |- A5y el

sL on(t—9)Ihi(s,%5) — 9(s,55) + 0(s.¥8) | o ds

+ /S ¢A<t—s>% / 5= DT Y (1. e | odTds

_ _ _ t?
< (Ihi(s,¥s) —9(s,¥s) +9(s ¥s) |2 + '+(1 ) (T Yogm) | 2) 1 0mlli s )

From this result we get that
s— 7' (t=9)(hi(s,Ys) —9(8.¥s) +9(t.Y0) + 75 Js (t =9 (S Yp(sye))
is also integrable ofs;,t] forallt € (s,ti;1]. ThIS |mpI|es thal"y € PCandrl is well defined.
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Fory,zeY andt € (s,t+1], i = {1,--- ,N}, we obtain
IFy(t) = Fz(t)llc(s 4.10:2)
< [Ihi(s,ys) —hi(s,z)ll2 + [[9(s.¥s) —9(s, %) |2
1 /t ||f(SYpsys))_f(SZp$zs)”] ds
r(a)Js (t—s)t-a
t
+/ en(t—s)([Ihi(si,¥s) —hi(s.Zs)ll2

+ Hg S:¥s) —9(s,%)ll2 +119(s.¥s) — (s, Zs) || #) s
T 1,215
+ / o(t—s / [ ( yp ryT — f( Zp(nzr))H@deS

S T)l a

> (|Lhi|C ((t,s];RT) +|Lg|C ((sitir1;RT) ) HyS _ZSH@‘F|L9|C((s,ti+1];R+)”Yt_Z”»%
1t L) T —
+I—(a) S (t S)l a q‘ p Zp(S,Zs)|‘¢@+(| hi|C((ti,S]§R+)”yS_ZS”»%
+|Lg|c (st Vs —Zsl\m|'—g|c<<s,ti+ﬂ:R+>Il>7t—ZII%) lonllLrs g0

£(1) _
/qu /sW"yP(T&TT)_ZP(T7z_T)||%’deS

+lgt, %) —9(t,z) |2 +

ta
+1
< Ka(lbwlequs1x) + 2lolos stz + g7 oy L rlotssaz)

X (L4 [ onlla(s g, ame) Y = 2y

Proceeding as above, we obtain that
C{

IFy) = Tzt)llcon)z) < Kalllole(otr+) + al'—()| tle(on)r))

X (L4 llonlliaorym+)IlY — 2y,
and
IFy(t) —Fzt)llcw.si2) < Kalbnlew sz Iy —2lv-

From the above results we get

[Fyt) —rzt)lly < Qlly—2ly.

SinceQ < 1, this shows thaf (-) is a contraction map and from the contraction mapping ppledhere exists a unique
mild solution for the equationd (1)-(1.3).

In the accompanying theorem we prove the existence redualtndd solution via fixed point technique for condensing
operators. For that we require the following lemma.

Lemma 4[42 If f € C([0.a];7) and F: [0,a] —+ & is the function defined by () = fé( = ) _ds, then Fe
CY([0,a); ) and

2
[IFflca(oaz) < ar (@) I f llcqo.a)2) -

Theorem 2Assume thatH;) — (Hs) are satisfied,” (t) is compact for all t> 0, ¢(0) € 2, and there exist a constantK
such that| (0[] < Kgl|¢] . If

(K + 25 Kt Bl iy o SUPEW(Kar ) (L4 | @It (s 1, y) < 1.

[KgKa+ ar a) I [[ 1m0 sup1W(Kar)](1+ H(PA|||_1([o,t1];R+)) <1,
then there eX|sts a mild solution df.() - (1.3).
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Proof Choose > 0 such that

t_d
(K -+ 269) (Ko Mal| @) + o 05 Mg .y Wi(KaS
+(Ma+I)) 10l 2) L+ l@nll 15 1, ) < S
and

(Ko +Kg)|| @]l 2 + Kg(Kas+ Mal|@||s) +

o

tl
ar (@) e lleo)irt)W((Ma

+ID@) 5 + KaS) (L + || @alliz jogy m+)) < S
foralls>r.

On the spac¥ = {yc #%([0,a];#") : y(0) = ¢(0)} endowed with a uniform convergence norm. LetB,(0,Y) —
B:(0,Y) be the operator considered as in the proof of ThedteArguing as in the proof of Theorefiy we can show that
I" is well defined. Next, we prove thatis a condensing map froB (0,Y) into B;(0,Y).

First, we show that there exists> 0 such thal” (B;(0,Y)) C B;(0,Y).

Letye B/ (0,Y). Fori=1,--- /N, t € (s,ti+1] we get

|If Sy 5 ”j
1PN < [Ihi(s; ¥s)ll2 +119(s,Ys)ll2 + 9t %)ll2 + = / ps“y ds

+/; <0A(t—5)(|\hi(94,)73)||@+||9(Sa)7s)|\9+Hg(SaYs)H@)dS
1t S| (T, Yp(eg0)ll2
T i
< ((Kny +Kg) (II¥s [l + 1) + Kg([I¥ell2 + 1) (1 + [ @all L1 1))
1 /t Mt (W ([[Yp(sye) ll2)
’_(0’) (t—9)t-a

Sm TW V, Vo 9
L[ e [N )

(s—1)t-@

_|_

ds

te 1
< [(Kn +2K0) el + Mall9l1) + g s I e

XW(Kar + (Ma+30) [0l 2)] (1 + | @allL1 (s 1,12

which implies that|"y(t)|c((s 4, < foralli=1,---,N. In the similar way we can proceed as faf [0,t1],

[ ( sy A ||@
IFYOIl < [19(0)ll2 +119(0, 9|2 + llat, )l 2 + = / ps“y ds

+/o‘ <0A(t—5)(||<0(0)||9+||9(0,<0)||@+||9(57>7s)||@)d5
1t s|1F(TYp(eg)ll2
_/ (pA(t_s)/O — 2T~ drds

(s— T)l—“

(K¢+Kg)|\¢|\z+KgHytHz+a/-( )H Mt llcjotam )W (Yo (sys)) | 2)
+((Kp+ Ko)[| @l + Ko¥ell ) || @all L1 0.0+

t s [Imellcogamt)WIYp(sys) )l 2
I'(or)/o (pA(t_S)/o (s—1)l-a drds

a

t
< Ko+ Kol @l + KofKar +Mallle) + b Imilo

XW((Ma+J) || 9]l + Kaf)) (1 lonllir oty )
<r
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On the other hand, from the properties of functipfi) we easily see that, fare (s, t;]
IFY®)llo.simt) < Kn(Kar +Mal[@]| ) <T.

From the above inequalities, we infer thidty(t)[|y <r, andl" has values i (0,Y).
Next, we consider the decompositibn= 213:11'1 where

hi(t,Yt), tE(ti,S], i>1
hi(s,ys) —9(s,¥s) +9(t, %)
Fyt) =< +Js 7't —s)(hi(s.Ys) — 9(s.Ys) +0(s.¥s))ds t € (S, tisa], i > 1,
®(0) —g(0, @)+ g(t. %) + J5 7" (t — 9)(0(0) — 9(0, @) + g(s.¥s))dst € [0,ty],

0, otherwise
F2y(t) = iy Js (t =97 (8.Yp(s57))dS t € (S,tiza], i >0,
0, otherwise

Fay(t) = ﬁ Js T (t=9) J$(s— 1) (T, Yp(rg:))dTdS t € (S, tia], i >0,
0, otherwise
We consider the subsequent proof into the following steps.

Step 1.The map’ ! is a contraction o, (0,Y).
Lety,ze B;(0,Y). Fort € (s,t;1], i =1,---,N, it is easy to see that

1Pty =205, am+) < Ka(Ky +2Kg) Iy = ZIv (14 [ @nllas 4, 1w +)s

Fort e (ti,s],i=1,---,N, ||I_ly— I'lz||C((ti,S];R+) < KoKy, lly—12||y.

Fort € [0,ts], Ity —T*Zcoy)ms) < KaKglly = Zllv (14 [ @all 2oty m+))
which implies that

H/'ly— rleY < {i:nﬂ?)‘(N}{Ka(Khi + ZKg)(1+ ||q0AHL1((S,ti+1];R+))7

KaKg(1+ [ @nll 1ot );m+)) HIY — 2y,
since

{i:Tf'f"XN}{Ka(Khi + 2Kg) (14 [ @nllLr (s 4, 2)m+)) s KaKo(L+[[@allLzogre))} <1

Hencel ! is a contraction o, (0,Y).

Next, we show that the mags’> and /™3 are completely continuous d (0,Y). Consider the constani defined by
ri=||ms ||C((S’ti+l];R+)W((Ma+Jg’) +Kar). We note thaf| f (s,Yp(sy,)) || <riforye B(0,Y) and alls€ (s, ti1].

Step 2.The map? is completely continuous o8 (0,Y).
From the properties of the functidi.) it is easy to see thdit? is continuous. Next, we show th&af is a compact operator
onB(0,Y).
From Lemma4 we have
2rq
F2yt+h) -y < he
P2yt =2yl < =6
for all y € B(0,Y), which shows that 2B, (0,Y) is equicontinuous oiis,ti. 1], and this result is obvious whene

(ti,s], i=1,---,N. Hence[l 2B (0,Y)]i is an equicontinuous subset®f[t,ti+1]; % ).

On the other hand, we show that the §Efy(s) :y € B/ (0,Y),s€ [s,ti,1]} is relatively compact i .
Lets < € <tjy1, i =1,---,N. Consider 41, Lemma 11.1.3] the mean value theorem for the Bochner irledor y €
Br(0,Y), ande <t <tj;1, we see that

B 1 t—¢ f(S,)T(st)) 1 t-¢ f(say_(s,E))
=g ) e Stk o
(t-e-s)

cB ryed (O, @/) +

@ I(a) co((t— &)1 F (S Yp(s5e)  SE I8 tival).
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Since the majx. is compact (se€lR, Lemma 2.2]) and € C([0,a] x %; Z), from the above we assert that

{r2y(s):y€B(0,Y),s€ [&,ti11]} CB o (0,%)+Ke,
al (a)

whereK; is a compact subset 6. Moreover,

{r?y(s):y€eB(0,Y),s€[s,€]} CBea (0,%),
al (a)

Hence we find that

{I_Zy(s) ‘ye Bf (O,Y),SE [S,ti+l]} cB TI;LE(O') (Oa @/) U (B Tllf(a) (07 @) + KE)a

is relatively compact ir#?, si a'}i; — 0 ase — 0. It follows that/"? is relatively compact.

Step 3.The mapl 3 is completely continuous. Now we prove tHa@t3y(t) : y € B,(0,Y)} is relatively compact i for
allt € [s,t4+41], i >0.
Lets <t <t andrp = Hmf||C((S,ti+l];R+)W((Ma+Jg’) + Kar)||qu|\L1((S’tiH];R+) From step 2 we know that the set
F = {R(s) :se (s,ti+1],y € Br(0,Y)} is relatively compact i, whereF(s) = fs( )T (s,Yp sys))ds
If ye Br(0,Y), using mean value theorem presenteddih Lemma 11.1.3] for the Bochner integral we get

t—¢& t

r3y(t) = T'(t—9Fy(9)ds+ | T'(t—s)FR(9)ds

S t—¢e
€ B, +(t—¢g)co({T'(s)x:s€ [g,t],xe R}),

and hencg3y(t) :y € Br(0,Y)} C By, + K¢, whereK, is compact and, — 0 ase — 0.
Thus the set is relatively compactd#i.

Further we show that the map 3B, (0,Y)];i, i = 1,---,N is an equicontinuous subset®f]t;, i 1]; %).
The proof is trivial on(ti,s]. Assumet € (s,ti+1). From Lemma4, fory € B;(0,Y) and 0< | < € such that +1 <tj 1,
we have

Py -yl =1 [ 7 - sRses [ 70 9R(sa
S S
| t
< [ 1 -9IRSsast [ BOIR+ -5 -Rit—9)sds

+/os M (t—s9)[[Fy(s)]zds

rl(t—
< W/ (pAt+I—sds+/ o O[IFyllco (8421 %S

rlt— /QDAt—

r1t 2rq1@
< '+1 </¢At+|—sds+/ ot )ds) arl( )||€0AHL1 (S4i41])°

then it follows thatI'3Br(O,Y) is right equicontinuous &t € (s,ti+1). From the similar argument we can say that
3B (0,Y) is left continuous at € (st 1] and right equicontinuous at Hence/ 3B, (0,Y) is a equicontinuous map.
Conclude from the above steps and Lemhthe operator§ 2 and/™3 are completely continuous arid is contraction.
Hence it shows thaff is a condensing operator and followed from Theorkme have that there exists a at least one
mild solution of the problem1(.1)-(1.3).

/\

4 Application

Consider the spac# := L2([0, 1) and letA be defined byAx = X" with domainZ consist of set of aly andy” € %,
such thaty(0) = y(m1) = 0. (L (t))t>0 is the analytic semigroup 0@( which is generated by the operatar
The operatoi has discrete spectrum with eigenvalues of the fernf, n € N and the corresponding normalized

eigenfunctions given byn(n) = (2)¥2sin(nn). Further, for ally € % and everyt > 0, .7 (t)y = 5E e <YYo > Yn,
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also the sefyn : n € N} is an orthonormal basis f&¥. The semigrouf.# (t)):>o is a uniformly bounded and compact.
R(A,A) = (A — A)~Lis a compact operator for evelyc p(A).
We know that the following integral equation

y(t) = % [ =972 as 249y t0

a
has a corresponding analytic resolvent operétb(t) )i>o on % which is given by

|7 t:07
T(t)= {%fraﬂe)\t(%(l_(1+R(A))A—“A))_ld)\,t>0,

wherels o represents a contour consisting of the régig” : & > 0} and{de™" : 5 > 0} for somev € (1, 77/2), see fi0].
Next, we consider the fractional neutral differential eires with state delay and the non-instantaneous impulsive
conditions are given by

a

g (vem = [ as—omsmes) = 5 (e - [ ke-sysmes)

+ [ als—Ox(s— a@lluwl)nds te0.d, n e 0. (4.1)
y(t,0) =y(t,m) =0, tec0,a, (4.2)
y(T,n) = @(1,n), T<0,9 € # =PCx L%([0,a;%), (4.3)
y(t,n)zf;as(s—t)y(s,n)ds te(t,s],i=1- N, (4.4)

for (t,n) € [0, x [0,711],0=tg =Sy <t; < < --- <ty < Sy < tny1 = a are prefixed real numberse L1(R).
To study this system, we suppose tlgat [0,00) — [0,0), i = 1,2 are continuous functions and we impose the
subsequent conditions

—The functiona; € C(R;R), j=1,2,3,
L= (1% a(9/59) " <o Ls = (1% 88(9/0(9) " <o, andLy, = (1% a3(9)/5(9) " <o
Under these conditions, we can define the magt,s| x B - %, g,f: [0, x B—> %, p: 1 x B—R,, by
p(s @) = s—pa(s)p2([lw(0)),

0
(L)) = [ alwisnds

0
ot 9)(n) = [ aou(snds

0
hi(t,g)(n) = /_wag(s)w(s,n)ds, i=1---,N.

From these conditions we can represent the equatibis@.4) by the abstract fractional impulsive problein)-(1.3.
Furthermore, the functiond,g,hi, are bounded linear operators withf|| (54 < Lt, [|9l#»») < Lg and
Hh”x(ﬁfy) S Lhiai = 17 7N'

We can prove that € % (%) is a mild solution of 4.1)-(4.4) if y(-) is a mild solution of the corresponding abstract
fractional impulsive problemi(1)-(1.3. Under the above assumptions, the equatidny-(4.4 has at least one mild
solution in the view of Theorerd and the uniqueness of the solution verified from the Thedrem

5 Conclusion

In this study, we make the concept of mild solution for frantl impulsive differential equations more appropriate by
using the perturbed resolvent operator technique. Byzirtdithe fixed point theorem we established the existencatses

of non-instantaneous impulsive differential equationshwsate-dependent delay. The non-instantaneous impulsive
systems are more suitable to the study of dynamics of ewslupirocesses in pharmacotheraphy. The natural
characteristics of fractional derivatives and neutraktgguations considered with non-instantaneous impulsesare
effective to describe the real world phenomena.
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