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Abstract: In this paper, a general inverse exponential form of the dyitg distribution and a general conjugate prior are used t
discuss the maximum likelihood and Bayesian estimatioedas unified hybrid censored sample. A general procedurdeiaving
two-sample Bayesian prediction is developed using unifidgditi censoring scheme. Special cases of the inverse Weilmglel such
as the inverse exponential and the inverse Rayleigh disiils are then used as illustrative examples. Finally,erical examples are
presented for illustrating all the inferential procedudeseloped here.
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1 Introduction

In life-testing experiments, the experimenter may stopettperiment before all the units on the test be have failedalue
some considerations such as time and cost. In such casest#ieed data is called censored data. The most two common
forms of censoring are Type-l and Type-Il censoring schegse-1 hybrid censoring scheme is introduced by Epstein
in [1] as a mixture of Type-l and Type-Il censoring schemes. Tybgbrid censoring scheme (Type-Il HCS) is proposed
by Childs et al. in 2] to fix the disadvantages inherent in Type-I hybrid censgpsnheme. Chandrasekar et al. 8 [
introduced generalized Type-I hybrid and generalized Iyp¢CS as mixtures of Type-| hybrid and Type-Il HCS. For
more details about HCS, one may refer4h [

Recently, Balakrishnan et al. iB][proposed the unified HCS to fix the disadvantages inherdghtigeneralized Type-
I hybrid and generalized Type-1l HCS, suggested by Chartteaset al. in 8]. This censoring scheme can be described as
follows. Consider a life-testing experiment in whicldentical units are placed on a life-test. Fix intederse {0,...,n}
andTy, T, € (0,0) such thak <r andT; < Ty. If the KM failure occurs before tim&, the experiment is terminated at
min{max(Xqn, T1), T2}. If the K" failure occurs betweel;, andT,, the experiment is terminated at nik.n, T,) and if
the k" failure occurs after timd,, the experiment is terminated ¥t.,. Under this censoring scheme, we can guarantee
that the experiment would be completed at most in tipavith at leastk failure and if not, we can guarantee exadtly
failures. The described unified HCS and inferential methmaised on such a scheme have been discussed earlier in the
literature; see, for exampled], [6], [7], [8], and 9].

We consider here the inverse exponential form for the ugthgrldistribution, suggested by Mohie EI-Din et al. in
[10], that is described as follows; Motivated by the fact thatshrvival function §F) F (x|68) = 1—F(x|0) corresponding
to any cumulative distribution functiol€OF) F (x|0) can be written in the form

F(x|6) =1-exd—y(x0)], 1)

wherey(x; 8) = —InF (x/8). Of course, some conditions need to be imposed sdthe#) is a validSF. These conditions
are:y(x; 0) is continuous, monotone decreasing and differentiabletfon, with ¢s(x; 8) — 0 asx — co and(x; 6) —
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asx — 0T. The probability density functiorPDF) corresponding tol is given by
f(x8) = —/' (% 6) exp—y(x )], )

where /'(x; 6) is the first derivative ofy(x;6) with respect tox. With an appropriate choice afi(x;6), several
distributions that are used in reliability studies can béaoted as special cases such as inverse exponential, énvers
Weibull and inverse Rayleigh distributions. Inverse exgural distribution has been considered by Killer and Kdmiat
[11], Duran and Lewis in12], and Abdel-Aty et al. in 13].

The rest of this paper is organized as follows. In Sectioh& nhaximum likelihood (ML) and Bayesian estimators of
the unknown parameters under squared error loss funct@deareloped. The problem of predicting the order statistics
from a future sample is then discussed in Section 3. Thesewafeibull, the inverse exponential, and the inverse Rglylei
distributions are presented in Section 4 as special cas@glifre general inverse exponential forth. Finally, in Section 5,
some computational results for the inverse exponentitiibligion are presented for illustrating all the inferehtnethods
developed here.

2 The ML and Bayesian Estimations

In this section, we use the general inverse exponential fmmthe underline distribution inlj to develop general

procedure for deriving the ML and Bayesian estimators olithlenown parameters based on an observed unified HCS.
Let X1:n < Xon < ... < Xn:n be the order statistics from a random sample of sirem an absolutely continuous CDF

F(x) = F(x|0) with PDF f(x) = f(x|0), where the parameté € © may be a real vector. Ldd; denote the number

of Xi.n's that are at mosTj, j = 1,2. Then,Dj is a discrete random variable has the binomial distriouBom F (T;)),

j = 1,2, with support{0,1,...,n}. Therefore, under the unified HCS described above, we hav@bthe following six

types of observations:

1.Case I: O< Xien < Xr:n < T1 < T the experiment terminate & and we will observeXy ., < ... < Xgn < ... < Xpip <
... < Xpy:n.

2.Case II: 0< Xin < T1 < X:n < T the experiment terminate ., and we will observeX;, < ... < Xgn < ... <
XDljn <. < Xr;n.

3.Case IlI: 0< Xicn < Ty < Tz < Xi:n the experimentterminate & and we will observel;n < ... < Xn < ... < Xp;in <
... < Xpyin.

4.Case IV: 0< Ty < Xien < Xrn < T2 the experiment terminate &t and we will observeyn < ... < Xp;in < ... <
Xien < oo < Xeen

5.Case V: < Ty < Xicn < T2 < X:n the experiment terminate & and we will observeXin < ... < Xp;in < ... < Xien <
... < Xpyin.

6.Case VI: 0< Ty < T2 < Xin < Xr:n the experiment terminate ., and we will observeX;n < ... < Xp;:n < ... <
XDZ;n <. < Xk:n.

Thus, the joint density function of the unified hybrid cerebsampleX = (X1, Xox, ..., Xp+:n) is as follows:

n! D %\ n—D*
fx (X) = mjﬂlf(xj){l—':(-r )}

n—D* . D*
=y GF(T)" ' ] Fx0), (3)
i= =1
_1\n-D*—i
WhereCi = %,
(D1,T1), if 0 <Xgn < Xrin < Ty < Toy Case |,
(X)), If 0 < Xien <T1 < Xin < Tp, Case ll,
(D*,T%) = if 0<Ty<Xen<Xen<To, Case 1V, )
’ ) (D2, To),if 0 < Xien <T1 < To < Xeop, Case lll,
ifO<Ty <Xen<To< X CaseV,
(K, Xkn), IO < Ty < To < Xien < Xron, Case VI,

andx = (Xg, X2, ..., Xp+ ) is @ vector of realizations.
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Upon using 1) and @) in (3), we obtain the likelihood function @ based on unified HCS as

D* n—-D*
L(6;x) =n! —y/'(x;;0 G Y( D*—i)y(T*; 6 , (5)
(8;x)=n <,|1( (X; ))) i; exp{ [Z Xj;0)+(n— w( )H

the log-likelihood function oB is given by

logL(8;x) = logn! + Di log (—y/(xj; 6))
=1

n—D*
+Iog{ ; Ciexp{ lz Y(xj;0)+ (n— D*—i)qJ(T*;G)l }} (6)

Thus, we can calculate the ML estimatefby solving the equation

dlogL(6x)

40 =0.

This equation is appropriate for a single vaRiebut for a vectoi® of course, the partial derivatives produce a system of
equations that are solved simultaneously.

For the Bayesian approach, the unknown parameter is redjasde realization of a random variable, which has some
prior distribution. We consider here a general conjugaiterpsuggested by AL-Hussaini idl], that is given by

1(6; 5) o A(6; 5) expl—B(0; 5))], 7)

wheref € O is the vector of parameters of the distribution1) éndd is the vector of prior parameters. The prior family
in (7) includes several priors used in the literature as speasds.
Upon combining 8) and (7), the posterior density function &, given unified HCS, is obtained as

T (6]x) = L(8;x)1(0;9d)/ / L(6;x)m(6;0)d6

dco
= llnz*Cim(G;x) exp—&i(6;x)], (8)
where N
n;j(6;x) = (B(—w’(xj:f?))) [A6:9)],
Gi(6;x) = (n—D"—i)Y(T";6)+B(6;0) + Elw(xj':e)
and

n—-D*

| = Z)Q/ (8:x) exp—i(6:%)].
The Bayesian estimator éfunder the squared error loss function is the mean of the postensity function, given by
n D*

_ Z}q/em (8:x) expl—Zi(8:x)]d6 9)

B 6eo

3 Two-Sample Bayesian Prediction

LetYim < Yom < ... < Ymm be the order statistics from a future random sample ofrsiz@m the same population. We
develop here a general procedure for deriving the pointateaial predictions fo¥sm, 1 < s< m, based on the observed
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unified HCS. It is well known that the marginal density functiof thes" order statistic from a sample of sinefrom a
continuous distribution witiCDF F(x) andPDF f(X) is given, see;15)], by

fien(3419) = 5= F 08" L= F )™ *1(36). ¥>0
- o mZGN F(ys)™ "1 (3s), (10)

)h‘ISW

whereCy, = m .
Upon substituting®) and @) in (10), the marginal density function &, becomes

o (10) = 7 3 Co (135, 0)) X~ (M= W) )] >0 ()

Upon combining §) and (L1), the Bayesian predictive density function\gf,, given unified HCS, is obtained as

Nen¥52) = [ Pran(l0)77 (61)10
0co
mi- -1 n-D*

=510 chl/n,-(e;x)exp[—&(e;x)]

x ZQN @' (ys, 8)) expl—(m—w)y(ys, 6)]d6. (12)

From (12), we simply obtain the cumulative distribution functibp _(t|x), fort >0, as

|1nD

- oD Z}q/em(e;x)exp[—a(e:x)]

xmz_ (mCWW) exf— (m—w)y(t, 8)]d6. (13)

The Bayesian point predictor ¥, 1 < s< m, under the squared error loss function is the mean of thaqinezldensity,
given by

Yem= /YSfY*Sm(YSM)dVSa (14)
0

wherefy_ (ys[x) is given as in 12).
The Bayesian predictive bounds of 1Q6- y)% two-sided equi-tailed (ET) interval fdm, 1 < s<m, can be obtained
by solving the following two equations:

RinUerh =% and Ry (Lerh)=1-7, (15)

whereFRy__(t[x) is given as in 13), andLet andUgt denote the lower and upper bounds, respectively. For theebtg
posterior densny (HPD) method, the following two equasioieed to be solved:

Fem(UnpolX) — Ry, (Lipp[X) = 1,

and
. (Unpp|X) — fy_ (Lupp|X) = O,

wherefy_(ys[x) is as in (2), andLypp andUnpp denote the HPD lower and upper bounds, respectively.
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4 [llustrative Examples

Several distributions that are used in reliability studtes be obtained as special cases from the general inverse
exponential form given inl). In this section, we apply the general procedure derivatiénpreceding sections for the
the inverse Weibull (IW) distribution, inverse Rayleighddnverse exponential distributions as illustrative exéaap

4.1 The Inverse Weibull Distributiofa, 3)

In this section we study ML estimates and Bayesian estinfatasmknown parameters based on unified hybrid from the
inverse Weibull distribution. Also we study two sample Bsig@ prediction intervals for order statistics (OS) based o
the inverse Weibull distribution which is one of the most omjant distributions in the inverse exponential-type slak
distributions. For example the inverse Weibull (IW) distriion has been used to distribution the degradation of
mechanical componentsl@) such as the dynamic components (pistons, crankshajtodtdiesel engines. Properties of
IW distribution have been obtained by, for examplef][ [18], and [19].

The distribution function of the inverse Weibull distriburt is given by

F(x/8) =expg—(ax)?], x>0, (16)
wheref = (a,),a > 0, andp >0 so we have
-B -B
woce) =T and wice) = Lo (17)

Suppose thatr is an unknown ang is known.Therefore, the likelihood function of and 3 based on unified HCS, is

given by
} . (18)

L(a,B;x) =n! L BD*niD*Qa*ﬁD*exp —a P Dz*i+7n—D*—i
s P A . JI:IleJ,_]_ i;} B T*B

j:lXj

Thus, the log-likelihood function af andg is given by

D* 1
logL(a,B3;x) = logn! + Z log (W) +D*log(B)
=1 Xj

+Iog{n_D*Qa‘BD*exp{—a‘5 lDz i+7n—D*—i1 }} (19)
iZo =1 Xf T ’

and so the ML estimatary_of a is readily obtained by solving the following equation
n—-D*

D* CP* i
i; {CiB (a‘B — D*) a PP lexp l—a‘ﬁ (121% + %)] } =0. (20)

For the case whea is an unknown ang@ is known, we use the prior density function which was sugggely Calabria
and Pulcini in L8] (when 3 is known) as

m(A;0) = a % lexg—da~F], (21)

wherea > 0,0 = (c,d) andc,d > 0.
HenceA(8;5) = a~°f~1 and B(8;5) = da*, from (8) the posterior density function is then given by,

,ln_D* 7ﬁ(D*+C)7l 73 D* 1 n—D*—|
m(0|x) =1 Z}Cia exp|—a Z—+7+d , (22)
i=

. B B
J:lXj T

where
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Hence, the Bayesian estimatorafunder the squared error loss function is obtained as

" N . —(D*+c+1)
. (D4+c+1)"P 1 n-D*—i
(D7 +c+1) ( +7+d> . (23)

g=—"T— G =
' i;ﬁ JZl Xf L
From (12), the Bayesian predictive density function¥gf,, given unified HCS, is obtained as

n—D*m-s

fY*sm(yS|X): 5= 1 ZO ZC'CW/ y,8+1 B(D*+ct1)-1

6O

xexp[—a‘5<z n- B*_iery;Wer)da
S

25

—1X

B m'l' D*+c+1 ”ZDO m‘SQCwB (
. —(D*+c+1)

n—D*—|+m—wer

T*B y{j '

Using (3), (17), and @2) then the predictive cumulative distribution function¥gf, is given by

+

(24)

. M (D +c+1) "2 M5 - GCyB (D* 1
NemtX) = ————— —r -
I(s—1)! i; WZOO y§+1 Z B

. —(D*+c+1)
n—-D*—i m-w
+ + + d) dys

T+B Ve
mr D*—FC n—-D* m—s C]CW D* 1
1\ 2f
J

e 52

n—-D*—i m-w —(D+c)
Do, +d> |

_|_

(25)

4.1.1 The inverse exponential distribution.

We can obtain the inverse exponential distribution as speeise of the inverse Weibull distribution by settifig= 1.
Hence the distribution function of the inverse exponerdistribution is given by

1
F(x0)= exﬁ—&], x>0, (26)
wherea > 0, and we have

1
ax?’
and so the ML estimatamy_of a is readily obtained by solving the following equation

i= 1=

Also, the Bayesian estimator af under the squared error loss function is obtained as

" * —(D* 1
gy T D" (P01 nDi (oot 29
B=— {1 i X '
i; j:lxj

W(0) = = and ¥(x0)= - (27)

I T*
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Putting = 1 in (24), then the predictive density function 4§, is given by

: mr (D*+c+1) "2 T GCw
f s T I(s—1)1
Yem (Ys1X) = I(s—1)! ; WZO B \&X

. —(D*+c+1)
n—-D*—i m-w
+ " + +d

T Ys

; (30)
and putting8 = 1 in (25), then the predictive cumulative distribution functionYgf, is given by
. . —(D*+0)
n D* m—s D *
QCW 1 n-D*-1I m-w
Fam(t1X) = —t—— +d : (31)
where
n—D* D* n—D*—i (D*+¢)
| =r (D"+c) G —+ —+d (32)
|ZO <j21 J T )

4.1.2 The inverse Rayleigh distribution.

We can obtain the inverse Rayleigh distribution as speeis¢ ©f the inverse Weibull distribution by settifg= 2. Hence
the distribution function of the inverse exponential disition is given by

(x|60) = exp —iz , x>0, (33)
(ax)
wherea > 0, and we have

1
P(x;6) = (ax? and ¢/(x6) = e
and so the ML estimatary_of a is readily obtained by solving the following equation
n—D*

i; {Q(uZ—D)aZD lexpl—a <Dzi12 wﬂ}:o.

(34)

T*2

(35)
Also, the Bayesian estimator afunder the squared error loss function is obtained as

—(D*+c+1)
. r(D*+c+1)"D D
0O Yo (S A )

(36)
Putting3 = 2 in (24), then the predictive denstiy function dfn, is given by

" " . —(D*+c+1)
mr(D*+c+" P mscc, (21 n-D'—-i m-w

N (YlX) = ———~— - =+ + +d

Ysm( =lx) I(s—1)! i;) WZO yg JZlXJZ T*2 yg

and puttingB = 2 in (25), then the predictive cumulative distribution functionYgf, is given by

: (37)

. m'l' D*+c " D*m s
FantX) = —<—37—

D e _ —(D*+c)
Z} <Ziz n D |+m W+d> ’
=1 %]

where

2 (38)
* * . 7(D*+C>
"o 21 n-D-i
| = (D*+c) C|> 5+—=z—+d : (39)
2 (J; T ) }
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Table 1: The ML and Bayesian estimates @f

ap
Scheme oML IP NIP
1 0.099 0.083 0.080
2 0.079 0.075 0.063
3 0.073 0.066 0.057
4 0.067 0.059 0.051

5 Numerical examplefor the inver se exponential distribution

In order to illustrate all the inferential results estaldid for the inverse exponential distribution, we generatetbr
statistics from a sample of size= 20 from the inverse exponential distribution with= 0.1. The generated order
statistics as follows: 0.026, 0.045, 0.061, 0.064, 0.0900%, 0.107, 0.108, 0.113, 0.118, 0.127, 0.274, 0.319,70.32
0.348, 0.388, 0.449, 0.584, 1.765, and 27.861. We will apiyfollowing four unified HCS:

1.Scheme 1: Suppoge=4,r =6, T; = 0.110 andT, = 0.200, therxs.20 < Xg:20 < T1 and the experiment would have
terminated afl; = 0.110. Therefore, we would have the following data: 0.02648,®.061, 0.064, 0.090, 0.105,
0.107, and 0.108;

2.Scheme 2: Suppoke=6,r =10, T; = 0.110 andT, = 0.200, thernxg:20 < T1 < X10:20< T2 and the experiment would
have terminated at;o.20= 0.118. Therefore, we would have the following data: 0.02648,®.061, 0.064, 0.090,
0.105, 0.107,0.108, 0.113, and 0.118;

3.Scheme 3: Suppoke=9,r =13, T; = 0.110 andT, = 0.200, thenT; < Xg:20 < T> < X33:20and the experiment would
have terminated &b = 0.200. Therefore, we would have the following data: 0.02646,0.061, 0.064, 0.090, 0.105,
0.107,0.108,0.113,0.118, and 0.127;

4.Scheme 4: Suppose= 13,r = 16, T; = 0.110 andT, = 0.200, thenT; < To < X13:20 < X16:20 @and the experiment
would have terminated at 300 = 0.319. Therefore, we would have the following data: 0.02648,®.061, 0.064,
0.090, 0.105,0.107, 0.108,0.113, 0.118,0.127, 0.274081®.

Based on the above four unified HCS, we used the results pieesarSubsection 4.2 to calculate the ML and Bayesian
estimates of the unknown parameterAlso, we calculate the point predictor and 95% ET and HPRligt®n intervals
for the future order statistic%;109, where 1< s < 10, from a future unobserved sample with sme- 10. All obtained
results for the Bayesian estimation and prediction, preeskim Tables 1,2, are computed based on two different choice
of the hyperparamete(s,d), namely,

1.(0.1,10): informative prior(IP).
2.(0,0): noninformative prio(NIP).

6 Conclusions and discussion

In this paper, based on the general inverse exponential fbyrfor the underline distribution, a general procedure for
calculating the ML and Bayesian estimators of the unknownampaters has been discussed when the observed sample
is unified hybrid censored sample. Both Bayesian point atehial predictions of the future order statistics from an
unobserved future sample have been developed. We can &pplyeneral procedure for several important distributions
that are used in reliability studies such as inverse Weilikrse Rayleigh, and inverse exponential distributidiie
applied in this paper the general procedures for the inveenential distribution as illustrative example.
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From the results in Table 2, we notice that, the point prediof mean is between the upper and lower bounds of
the prediction intervals. Also, a comparison of the rediaitshe informative priors with the corresponding ones fonn
informative priors reveals that the former produce moreigeeresults. Moreover, the HPD prediction intervals seem t
be more precise than the ET prediction intervals.
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Table 2: Bayesian point predictor and 95% ET and HPD prediction \@ieiYs. N, for s=1,..., ¢, from the exponential distribution.

IP NIP
Scheme s YN ET interval HPD interval YN ET interval HPD interval
1 1 0.463 (0.011,2.754) (0.007,2.121) 0.509 (0.011,3.009) (0.005,2.293)
2 0.847  (0.131,4.529)  (0.009,3.630) 0.986 (0.135,4.998) 0.008,3.957)
3 1.321 (0.359,6.747) (0.109,5.526) 1.537 (0.367,7.488) 0.104,6.049)
4 1.788  (0.656,9.006)  (0.291,7.479) 2.085  (0.669,10.037)0.278,8.212)
5 2271  (1.009,11.385)  (0.529,9.542) 2.654  (1.024,12.727(0.508,10.500)
6 3.021 (1.489,15.017)  (0.851,12.638) 3.533 (1.509,18.81 (0.819,13.926)
7 3.835  (2.057,19.006) (1.245,16.057) 4.492  (2.080,8).31 (1.198,17.716)
8 4751  (2.723,23.516)  (1.716,19.931) 5571  (2.749,25.41 (1.651,22.015)
9 6.563  (3.739,32.142) (2.378,27.169) 7.678  (3.773,36.07 (2.291,29.998)
10 8.956 (5.089,43.544)  (3.259,36.773) 10.464 (5.13858. (3.142,40.597)
2 1 0.491  (0.012,2.828)  (0.008,2.194) 0.535 (0.012,3.056) (0.007,2.352)
2 0.914 (0.141,4.620) (0.011,3.734) 1.015 (0.145,5.030) 0.010,4.028)
3 1.409  (0.386,6.855)  (0.124,5.667) 1.565 (0.396,7.496) 0.120,6.133)
4 1.894 (0.707,9.124) (0.327,7.654) 2.109 (0.725,10.009)(0.320,8.303)
5 2.392  (1.089,11.507)  (0.594,9.748) 2.670  (1.113,12.656(0.582,10.594)
6 3.171  (1.611,15.161) (0.955,12.899) 3.543  (1.643,1.69 (0.936,14.033)
7 4.014 (2.227,19.165)  (1.395,16.374) 4.491 (2.269,R).13 (1.368,17.832)
8 4959  (2.951,23.689) (1.922,20.308) 5556  (3.003,29.15 (1.885,22.136)
9 6.851 (4.055,32.398) (2.661,27.690) 7.662 (4.124,35.74 (2.613,30.174)
10 9.348  (5.519,43.900) (3.645,37.482) 10.445  (5.614148. (3.581,40.839)
3 1 1.305 (0.030,6.088) (0.009,4.748) 1.470 (0.034,6.843)(0.011,5.305)
2 2.079  (0.316,9.889)  (0.030,8.044) 2.208  (0.344,11.182)0.030,9.031)
3 3.076 (0.863,14.623)  (0.293,12.178) 3.280 (0.934,14.59 (0.302,13.708)
4 4046  (1.583,19.414) (0.761,16.419) 4329  (1.708,29.09 (0.790,18.517)
5 5.038 (2.440,24.440)  (1.375,20.881) 5.409 (2.626,5).86 (1.431,23.585)
6 6.599  (3.611,32.167) (2.204,27.606) 7.097  (3.881,%.71 (2.295,31.209)
7 8.282  (4.997,40.620) (3.218,35.014) 8.923  (5.364,45.41 (3.352,39.618)
8 10.166  (6.625,50.165)  (4.431,43.395) 10.972 (7.10874). (4.616,49.139)
9 13.976  (9.106,68.644)  (6.129,59.181) 15.068  (9.760678. (6.390,66.997)
10 18.998 (12.398,93.030) (8.392,80.115) 20.474 (131284317) (8.751,90.687)
4 1 0.910 (0.022,4.417) (0.012,3.471) 0.990 (0.024,4.776) (0.015,3.739)
2 1515 (0.239,7.118) (0.024,5.843) 1.623 (0.253,7.728) 0.024,6.315)
3 2.247  (0.658,10.475)  (0.236,8.817) 2411  (0.694,13.400 (0.242,9.544)
4 2.952 (1.212,13.856)  (0.612,11.856) 3.174 (1.275,8.10 (0.628,12.851)
5 3.668  (1.873,17.393) (1.105,15.046) 3.952  (1.969,18.99 (1.135,16.327)
6 4.804 (2.779,22.857)  (1.769,19.867) 5.181 (2.917,8).97 (1.818,21.572)
7 6.023  (3.853,28.819) (2.582,25.167) 6.502  (4.041,%).51 (2.654,27.345)
8 7.384  (5.116,35.542) (3.556,31.158) 7.980  (5.362,89.89 (3.655,33.872)
9 10.179  (7.038,48.680)  (4.913,42.509) 10.990 (7.372%3. (5.053,46.203)
10 13.860  (9.586,65.996)  (6.725,57.555) 14.956  (10.@B97P)  (6.917,62.551)
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