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Abstract: In this paper we prove that no absolutely maximally entangled, AME, state with minimal support exists with 7 sites and 5
levels. General AME states are pure multipartite states that, when reduced to half or less of the sites, the maximum entropy mixed state
is obtained. They have found applications in teleportationand quantum secret sharing, and finding conditions for theirexistence is a
well known open problem. We consider the version of this problem for minimally supported AME states. We single out known both
sufficient and necessary conditions in that case. From our negative result, we show that the necessary condition is not sufficient. The
proof uses a recent result on the theory of general, nonlinear, classical codes.
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1 Introduction

In this paper we consider pure states ofn qudrits,
|Ψ〉 ∈ (Cd)⊗n, such that, when tracing out half or more of
the sites, the mixed state of maximum confusion is
obtained. Those states have been called absolutely
maximally entangled, AME, orAME(n,d), in [3] in the
context of quantum secret sharing schemes. The same
concept had already appeared in [6] in the context of
quantum error correcting codes, under the term
⌊n/2⌋-uniform.

AME states have found applications in fields like
teleportation or quantum secret sharing, and provide links
between different areas of mathematics, like coding
theory, orthogonal arrays, quantum error correcting codes
or combinatorial designs, see [2], [3] and [4].

A well known open problem is to determine conditions
for the existence of AME states. This paper deals with the
problem of existence of AME states that are supported on
a minimal set of kets from the computational basis.

For AME states of minimal support, a necessary
condition is thatd ≥ ⌈n/2⌉+ 1 if n ≥ 4 and d is any
integer [2], and a sufficient condition is thatd ≥ n− 1,
whend is a prime power, [1,2,4].

We prove that there is noAME(7,5) state with
minimal support. The result is proved using the standard

theory of linear codes, along with a recent result that
relates linear and nonlinear codes, see [5]. Since the case
where n = 7 and d = 5 is not forbidden by the above
necessary condition, we see that the condition is not
sufficient.

The organization of the paper is a follows. Sections2
and 3 are devoted to review the general definitions and
both necessary and sufficient conditions. In section4, it is
proved that noAME(7,5) states of minimal support exist.
Section5 contains concluding remarks and some open
questions.

2 Absolutely Maximally Entangled States

Let n and d be integersn,d ≥ 2. Let |Ψ〉 be a pure
multipartite state onn sites, where the local Hilbert space
is d-dimensional. That is,|Ψ〉 ∈ (Cd)⊗n.

Definition 1. We say that|Ψ〉 is absolutely maximally
entangled with n sites and local dimension d, AME(n,d),
if for any partition of{1, . . . ,n} into two disjoint subsets
A and B, with|B|= m≤ |A|= n−m, the density obtained
from |Ψ〉〈Ψ | tracing out the sites on the entries in A is
multiple of the identity,

TrA |Ψ〉〈Ψ |=
1

dmIdC⊗m.
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If V is a vector spacev∈V andB ⊂V is a basis ofV,
the support ofv in the basisB is the number of nonzero
coordinates ofv in the basisB.

A linear algebra argument shows that anyAME(n,d)
state has support on the computational basis of at least
d⌊n/2⌋.

Definition 2. Given two integers n, d, with n,d ≥ 2, we
will say that an AME(n,d) state|Ψ〉 is of minimal support
if the support of|Ψ〉 in the computational basis is d⌊n/2⌋.

There is a characterization ofAME(n,d) states of
minimal support in terms of classical codes.

We consider the setZd = {0, . . . ,d−1}. A code over
the alphabetZd of wordlengthn is a subsetC ⊂ Zn

d. On
C we consider the Hamming distance. Given two words
w,w′ ∈ C , the Hamming distance betweenw and w′,
DH(w,w′) is the number of coordinates on which the
words w and w′ differ. The minimum distanceδ of the
code C is the minimum of the distancesDH(w,w′)
between different wordsw,w′ ∈ C . The well known
Singleton bound establishes that|C | ≤ dn−δ+1. A code is
called maximum distance separable, MDS, if the
Singleton bound is an equality. See [7] for general
properties of codes.

Theorem 1([2,4]). The existence of AME(n,d) states of
minimal support is equivalent to the existence of MDS
codes of wordlength n, alphabet size d and minimum
distance⌈n/2⌉+1. The words of the code and the kets of
the state are in one onto one correspondence.

The following property follows by a combinatorial
argument involving the associated MDS code.

Proposition 1([2]). Let n≥ 3 be an integer. If there is
an AME(n,d) state of minimal support, then there is an
AME(n−1,d) state of minimal support.

So, givend, the set of alln such thatAME(n,d) states
of minimal support exist is an interval.

Corollary 1. For any integer d≥ 2, there is an integer
N (d) such that, an AME(n,d) state of minimal support
exists if, and only if, n≤ N (d).

We finally mention the necessary condition for the
existence of AME states of minimal support:

Theorem 2([2]). If n ≥ 4 and an AME(n,d) state of
minimal support exists, then d≥

⌈

n
2

⌉

+1.

This condition forbids many combinations(n,d) for
possible AME(n,d) states of minimal support. For
example, althoughAME(6,2) states exist, none of them
can be of minimal support, [2].

Theorem2 can be read as an upper bound forN (d).

Corollary 2. For any integer d≥ 3, N (d) ≤ 2d− 2, if
N (d) is even, andN (d)≤ 2d−3, if N (d) is odd.

Proof We observe that theorem2 is true whend ≥ 3, for
any n ≥ 2, the cases not covered in theorem2 being
trivial. Since AME(N (d),d) states of minimal support
exist, the statement is another way to write the inequality
⌈N (d)/2⌉+1≤ d.

The results discused so far are true for general integer
values of the local dimensiond.

3 Using Linear MDS Codes

In the case whered is a prime power, the alphabet
{0, . . . ,d − 1} can be given a unique field structure,
GF(d). In this case, there is more detailed information on
certain cases.

In the case of linearMDS[n,k] codes over the field
GF(d), wheren stands for the code lenght andk is the
code dimension, the Singleton identity reads

k= n− δ +1,

whereδ is the minimum distance. The linear MDS codes
that give rise toAME(n,d) states of minimal support
have, according to the Singleton identity and theorem1,
dimensionk= ⌊n/2⌋.

Whend is the power of a prime number, we have the
theory of generalized Red Solomon, GRS, codes and their
extensions, that are known to be MDS. If 4≤ n ≤ d+ 1
and 2≤ k ≤ n−2, there is a linear MDS code of lenghtn
and dimensionk overGF(d), see [7] for details.

The following result gives many examples ofAME
states of minimal support. It has been stated in [4]
resorting to the theory of linear MDS codes, as referred to
above, and in [1] using the theory of orthogonal arrays1.

Theorem 3([4,1]). There are AME(n,d) states of
minimal support, whenever n≥ 4 and d≥ n− 1 is a
power of a prime number.

Corollary 3. If d is a prime power, d≥ 3, thenN (d) ≥
d+1.

4 A Negative Example

Theorem 4. There is no AME(7,5) state of minimal
support,N (5) = 6.

Proof As in [7], define Ld(k) as the maximum
wordlength of any linear MDS code of dimensionk over
GF(d), d being a prime power. Several bounds and
equalities are known aboutLd(k), see [7]. We will use
that Ld(3) = d + 1 if d is an odd prime power. In
particular, we use thatL5(3) = 6.

1 Due to a typographical error, the result is stated in [1] for a
general integer dimensiond. The authors ment to state it in the
case whered is a prime power.
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This shows that no linear MDS code overGF(5) exists
with wordlength 7 and dimension 3.

Now suppose that anAME(7,5) state of minimal
support exists. By theorem1, there is an MDS code over
GF(5) with wordlength 7 and minimum distance 5.

The code given in theorem1 however, is not
guaranteed to be linear, so this boundL5(3) = 6 on the
theory of linear codes does not suffice to prove the
statement.

To end the proof, we note a result of [5], that any
MDS code, not necessarily linear, over an alphabet of size
5, code size 5k, k ≥ 3, and minimum distanceδ ≥ 3, can
be transformed to a linear MDS code with the same
parameters and dimensionk with a permutation of
coordinates, followed by a permutation of the symbols at
each coordinate separately.

This proves that noAME(7,5) state of minimal
support exists andN (5) ≤ 6, corollary 3 gives the
reverse inequality.

The necessary condition given in theorem2 does not
forbid the existence ofAME(7,5) states of minimal
support. This necessary condition, therefore, is no
sufficient.

5 Conclusions

The existence problem forAME(n,d) states is a non trivial
one, even for states minimally supported.

AME(n,d) states of minimal support exist if, and only
if n ≤ N (d), and the necessary and sufficient conditions
reviewed in this paper can be read as:

d+1≤ N (d)≤ 2d−2, or 2d−3,

for d ≥ 3, the inequality on the right being necessary and
valid for any integerd, and the one on the left being
sufficient and valid for alld power of a prime number. We
have seen that the upper bound forN (d) is not tight,
sinceN (5) = 6.

The theory of linear codes is restricted to the case
where the local dimension is a prime power. To
investigate other local dimensions, further consideration
of general (nonlinear) codes and of combinatorial
structures, like orthogonal arrays, seems needed. Sharper
estimates on the maximum number of sitesN (d) for
which there areAME states of minimal support for a
given local dimensiond are desirable too.
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