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Abstract: The entropy functions are useful tools to measure the wmogytin a random variable. Dynamic Cumulative Residual
Entropy (DCRE) introduced by Asadi and Zohrevaifids a useful dynamic measure of Cumulative Residual Entbpgy studied
some properties and applications of these measures. Ipdper, Dynamic Cumulative Residual Entropy is proposeédas order
statistics and under conditions is showed a charactesizaéisult that Dynamic Cumulative Residual Entropy of orstatistics can
determine the distribution function uniquely. Then someperties for DCRE of order statistics is presented.
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1 Introduction

The concept of Shannon entropy as a basic measure of umteftai a random variable was introduced by Shanrgn [
Suppose& be a continuous random variable having probability derfaitigtion f and cumulative distribution functids.
Therefore, Shannon entropi( f) of X is defined as follows:

+o00

H(f) = —E[log f(x)] = —/ f(x)l0gf (x) dx, (1.1)

—00

Study of duration is a subject of interest in many fields oésce such as reliability, survival analysis, economics and
business. In reliability theory and survival analysis, #lulitional life time given that the component has survivpdau
timet is called the residual life function of the componentXlbe the life of a component, thefa = (X —t | X > t) is
called the residual life function.

If a componentis known to have survived to adgken Shannon entropy is no longer useful to measure the tantgrof
remaining lifetime of the component. Therefore, EbrahBhtlefined the entropy for residual lifetimg¢= (X —t | X > t)

as a dynamic form of uncertainty called the residual entatgimet and defined as

H(X;t) = — t+w% Iog%dx, (1.2)

ThatF(t) = P(X >t) = 1— F(t) is the survival (reliability) function oX.

Rao et al. 4] defined Cumulative Residual Entropy(CRE) as an altereatieasure of uncertainty to Shannon entropy
in that the probability density function is replaced by sual function and obtained some properties and application
of that in reliability engineering and computer vision. alhey showed CRE overcomes some problems with Shannon
entropy. Such as CRE possesses more general mathematjgaittpgs than Shannon entropy and easily is computed from
sample data. The measure is more consistent since it is bas#idtribution function than the density function whiclais
derivative of the distribution function. For more detaée44] and [5]. CRE for a non-negative univariate random variable

* Corresponding author e-madsman.kamari@uhd.edu.iq

(@© 2016 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/jsap/050315

516 NS 2 0. Kamari: On Dynamic cumulative residual...

is by:

oo

£ =~ [ FoologF(ax a3)

Analogous to the residual entropy, Asadi and Zohrevdhdéfined a dynamic form of CRE, that is CREX{ This
function is called Dynamic Cumulative Residual Entropy(®K) and defined as

o [TFX), F(X)
E(X;t) = /t o 9E & (1.4)

It's clear thaté (X;0) = &(X).

Suppose&y, X, ..., Xy be arandom sample, the order statistics of the sample isdidfinthe arrangemekt, Xo, ..., Xy
from the minimum to the maximum by, X2), ..., X(n). Order statistics are widely used in reliability theory andvval
analysis to studyn— k+ 1) out of n system which works if and only if at leagt— k+ 1) out of n components are
working. Series and parallel systems are particular caSese system correspondingke- 1 andk = n, respectively.
For more details sed[, [10].

Baratpour et al.g], [ 7] presented some properties of the entropy of order stdistd record values and established
some characterization results. Also, Baratpdjrhave derived characterizations result based on Cumaelagésidual
entropy of first order statistics. Park and Kid1] defined the cumulative residual entropy of firgirder statistics.

The purpose of this paper is determination distributiorcfiom using Dynamic Cumulative Residual Entropy of the
it order statistic. The paper is organized as follows: In secfl, Dynamic Cumulative Residual Entropy is defined
based on order statistics. Section 3 includes Charactierizaroperty based oit" order statistics. Some properties of
CRE and DCRE foith order statistics is presented in section 4. In section 5, PORtype | censored data is given.
Following a brief conclusion in the end of paper is given.

2 Dynamic Cumulative Residual Entropy of Order Statistics

Supposey, Xp, ..., X, be a random sample with distribution functiBnthe order statistics of the sample is defined by the
arrangemenXy, Xz, ..., X, from the minimum to the maximum ¥y, X2), ..., X(n)- The cumulative distribution function

of theit"(i = 1,2, ..., n) order statistics is given by

R =3 (i) Foor-Fp™ 2.1

k=i

First order statisticX1) and last order statistics,, are very important special case of order statistics in acin
many statistical applications the interest is centeredstimating the maximum or the minimum. (S&&]).
Then cumulative distribution function o) andX,) are respectively as

Fx(l) (X) =1- (1_ F(X))nv (22)

Fx(n) (x)=(F (X)n’ (2.3)
Park and Kim [L1] defined the Cumulative Residual Entropy of ieorder statistics as

/F X)10gF ) (x) dx, (2.4)

Then Dynamic Cumulative Residual Entropy of iHeorder statistics is defined as follows:

) Fi(x)
/ =0 Iog_)(t) dx, (2.5)

It's clear thatE(F(i>;0) = E(F(i))-
If i =1, we have
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)(X) 1(X)
Iog_ dx, (2.6)
/ Fy(t) F(t)
Using relation (2.2) and changing varialfiéX) = U in relation (2.5), we can rewrite by
n F®  u'logu nlogF(t) (F® un
Foit) = —— 1 du+ / Y 4 27
g T A Ry S A Ty @7

In the following example, DCRE of the first order statistisscalculated for an exponentially distributed random
variable .

Example2.1 If X is distributed with parameter ¢B) and survival function oF (t) = 1 — e %%, then easily using
relation ((2.7) we can obtaifi(F;);t) = %.

3 Characterization property based on DCRE of it" order statistics

Gupta, et al. 13] have studied characterizations based on dynamic Shamtoopg of order statistics. In this section
characterization property on the Dynamic Cumulative ResidEntropy of thaé!" order statistics is studied by using the
sufficient condition for the uniqueness of the solution dgtfia@hvalue problem

y = f(xy),¥(%) = Yo,

That f is a function of two variables whose domain is a reg®n R?, (Xo,Yo) is a point inSandy is the unknown
function. By the solution of the initial value problem on amtervall C R, we mean a functiorp(x) satisfies the

conditions:g is differentiable orl, the growth ofp lies in'S, @(xo) = yo and@ (x) = f(x, @(x)) for all x € I.

The following theorem and lemma are used in proving of thed3e2. seel4).
Theorem 3.1 Suppose that be a continuous function defined in a dom&ia R? is said to satisfy Lipschitz condition
with respect to y on the domain S, that is
| f(xy1) — f(X,¥2) [<k[y1—y2[,k>0
For every pair of pointgx,y;) and (x,y2) in D. Theny = @(x) satisfy the initial value problery’ = f(x,y) and
©(Xp) = Yo is unique.

Lemma 3.1 Let f be a continuous function in a convex regisic R?. Supposef;—; exists and it’s continuous in S.
Thenf satisfies Lipschitz condition iS.

Now in the following theorem characterization property oBRE ofit" order statistics is presented.
Theorem 3.2 Suppose thaX be a non- negative continuous random variable with cunwdatistribution function of
F and with& (F;);t) < oo, t > 0. Thené (F;;t) uniquely determinek.

Proof: let F1, F are two functions such that

& (Fagiyt) = &(Fz(ipt),t > 0,i <n

Differentiating both sides of the relation (2.5) with respet and relationship between hazard rate function and mean
residual lifetime function for thé" order statistics given by

rR(t) = mFriTS)() ) (31)
we have Fot)
o MR () — &(Fiyt) + me () —g

me (1) &(Fayt) — me (1) 42
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Suppose
&(Fagiyst) = E(Fiyit) =h(t),t > 0,i<n

thatF; andF; are to distribution functions. Then foe> 0 from relation (3.2) we conclude that
O =gt )M, 0 =wtm, ©)

where
Yty =

By applying theorem 3.1 and lemma 3.1 we obtain
me, (O =me, (1),t20i<n
Which using relation (3.1) giver&lw (t)= r,:z(i) (t),t > 0,i <nHence the proof is complete.

4 Some Properties on CRE and DCRE for it" Order Statistics

Mean residual lifetime play important role in reliabilitp@ survival analysis. The following property shows the tieta
betweerf,:(i)(t) andm,:(i)(t).

Proposition 1 SupposefF(i) < o denotes the CRE of tH#' order statistics, then

Proof: Refer to fl], theorem 2.1.
Proposition 2 Let EF<i> < « denotes the DCRE 6" order statistics, then
E(F(i);t) = E[rn:(i)(x)p((i) > t]
Proof: the proof of the theorem follows the same steps as used @ prd.
In the following proposition the upper bound is derived foe DCRE of thé'" order statistics.

Proposition 3 The upper bound for the DCRE 8 order statistics is as follows

& (Fa
E(Fipt) < =
U Fai ()
Proof: we can writed (F);t) as follows
Lol I0ogF ) (t) [~
Fit) = —=—— [ Fui()logF i (x) dx+ ——212 [ F(x)dxt>0
& (Fyt) Fi(t)/t iy (X)logF 4 (x) dx + Fo (iy(x) dx
0] 0]
Since lod=;(t) < 0, we have
£(F, -t)<_L/°°E- (x)10gF (x)dx<_L/°°E- (X)10gF ;) (X) dx
(irt) = Foo® ) () g ="F0 0) gr ,
hence
& (Fa
E(Fiit) < =
Fiit) Fi®)

if t — 0 thené (Fi);t) = &(Fy;)).
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5 DCRE of type| Censored Data

If we have the Type | right censored variabten(X,C) thatC is the censoring point assumed to be a constant, the survival
function ofmin(X,C) is

— X),x<C
Fe(X) = {FC(()’))(>C
Then the DCRE of the Type | censored variable can be defineullas/é:
CFx, FX)
Fit)=— ——log=——=dx,
éc(Fit) L Fo gF(t)
Example 5.1 Let X ~ Exp(8) with survival function ofF (x) = e %, hencefc(F;t) can be written as
1. 1
[ o P
fe(Fi)=e Ot —c— o]+ 5

6 Conclusion

The entropy functions are efficient measures of uncertaingyrandom variable that are applied in a lot of fields such as
reliability, finance, economics, insurance, medicine, attd Cumulative Residual Entropy is an alternative meastire
uncertainty to Shannon entropy in that probability denityction is replaced by survival function. The Dynamic form
of Cumulative Residual Entropy measures the residualttiiebf the component has survived up to time t. The entropy
measures based on order statistics have been studied vadelyare crucial to measure uncertainty in statistical
modeling. In this paper, Dynamic Cumulative Residual Epyrproposed based on order statistics and under conditions
showed a characterization result that Dynamic Cumulatiesidual Entropy of order statistics can determine the
distribution function uniquely. The theoretical outcomeshis paper can be interest both from theoretical as well as
practical point of view.
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