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are α0−admissible on a closed ball in complete dislocated metric spaces. Our results provide extensions as well as substantial
generalizations and improvements of several well known results in the existing comparable literature.
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1 PRELIMINARIES AND SCOPE

Branciari [6] obtained a fixed point theorem for a single
valued mapping satisfying an analogue of Banach’s
contraction principle for an integral type inequality.
Rhoades [21] proved two fixed point theorems involving
more general contractive condition of integral type.
Moradi and Omid [17] established fixed point results for
mappings satisfying integral type inequality depending on
another function.

Samet et al. [23] introduced a concept of
(α,ψ)− contractive type mappings and established fixed
point theorems for such mappings in complete metric
space. Hussain et al. [11] ,[12], [13] and Salimi et al. [22]
obtained fixed point results for single and multi-valued
mappings extending the notion ofα-admissible
mappings. Mohammadi et al. [16] introduced a new
notion ofα −φ−contractive mappings and show that this
is a real generalization for some old results. Recently
Arshad et al. [2] established fixed point results of a pair of
contractive dominated mappings on a closed ball in an
ordered complete dislocated metric space. Over the years,
fixed point theory has been generlized in multi-directions
by several mathematicians(see [1-22]).

LetΨ denote the family of all nondecreasing functions
ψ : [0,+∞) → [0,+∞) such that∑+∞

n=1ψn(t) < +∞, and
ψ(0) = 0 for eacht > 0, whereψn is thenth iterate ofψ .

Definition 1. [10] Let X be a nonempty set and let dl :
X ×X → [0,∞) be a function, called a dislocated metric
(or simply dl -metric) if the following conditions hold for
any x,y,z∈ X :

(i) If dl (x,y) = 0, thenx= y;
(ii) dl(x,y) = dl (y,x);
(iii) dl(x,y) ≤ dl (x,z)+dl (z,y).
The pair (X,dl ) is then called a dislocated metric

space. It is clear that ifdl (x,y) = 0, then from (i),x = y.
But if x= y, dl (x,y) may not be 0.

Definition 2. [10] A sequence{xn} in a dl -metric space
(X,dl ) is called a Cauchy sequence if givenε > 0, there
corresponds n0 ∈ N such that for all n,m≥ n0 we have
dl (xm,xn) < ε.

Definition 3. [10]A sequence{xn} in dl -metric space
converges with respect to dl if there exists x∈ X such that
dl (xn,x) → 0 as n→ ∞. In this case, x is called limit of
{xn} and we write xn → x.

Definition 4. [10] A dl -metric space(X,dl ) is called
complete if every Cauchy sequence in X converges to a
point in X.

Definition 5. [23]. Let (X,d) be a metric space. A
mapping T: X → X is an(α, ψ)−contractive mapping if
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there exist two functionsα : X×X → [0,+∞) andψ ∈Ψ
such that

α(x,y)d(Tx,Ty)≤ ψ(d(x,y)),

for all x,y∈ X.

Definition 6. [23]. Let T : X → X and
α : X × X → [0,+∞). We say that T isα-admissible if
x,y∈ X, α(x,y)≥ 1 implies thatα(T x,Ty)≥ 1.

Example 1.Let X = (0,∞) andT an identity mapping on
X. Defineα : X×X → [0,∞) by

α (x,y) =

{

e
y
x if x≥ y,

0 if x< y.

ThenT is α−admissible.

Definition 7. ([1]). Let S,T : X → X and
α : X × X → [0,+∞). We say that the pair(S,T) is
α-admissible if x,y ∈ X such thatα(x,y) ≥ 1, then we
haveα(Sx,Ty)≥ 1 andα(Tx,Sy)≥ 1.

Definition 8. ([22]). Let T : X → X and
α,η : X ×X → [0,+∞) two functions. We say that T is
α-admissible mapping with respect toη if x,y ∈ X such
that α(x,y) ≥ η(x,y), then we have
α(Tx,Ty) ≥ η(Tx,Ty). Note that if we takeη(x,y) = 1
then T is called α-admissible mapping [23]. If
α(x,y) = 1, then T is called an η-subadmissible
mapping.

Definition 9. Let S,T : X → X and
α,η : X × X → [0,+∞) two functions. We say that the
pair (S,T) is α-admissible with respect toη if x,y ∈ X
such that α(x,y) ≥ η(x,y) then we have
α(Sx,Ty) ≥ η(Sx,Ty) and α(Tx,Sy) ≥ η(Sx,Ty). Also,
if we take η(x,y) = 1, then, the pair(S,T) is called
α-admissible, if we take,α(x,y) = 1, then we say that the
pair (S,T) is η-subadmissible mapping. If we take S= T
we obtain Definition 10. Also if we takeη(x,y) = 1, then
we obtain the Definition 9 of Abdeljawad [1].

Definition 10. ([16]). Let T : X → X andα0 : X ×X →
[0,+∞) by

Tx= x+1, α0(x,y) =

{

1 α(x,y)≥ η(x,y)
0 otherwise

}

.

We say that T isα0-admissible. Ifα0(x,y) ≥ 1, then
α(x,y) ≥ η(x,y) and so α(Tx,Ty) ≥ η(Tx,Ty). This
impliesα0(Tx,Ty) = 1. Alsoα0(x0,Sx0) = 1.

Definition 11. Let S,T : X → X andα0 : X×X → [0,+∞)
by

Sx= x2
,Tx= x andα0(x,y) =

{

1 α(x,y) ≥ η(x,y)
0 otherwise

}

.

We say that the pair(S,T) is α0-admissible. If
α0(x,y) ≥ 1, then α(x,y) ≥ η(x,y) and so
α(Sx,Ty) ≥ η(Sx,Ty) and α(Tx,Sy) ≥ η(Sx,Ty). This
implies α0(Sx,Ty) = α0(Tx,Sy) = 1. Also
α0(x0,Sx0) = 1. If we take S= T we obtain the Definition
12.

Define̥ = {ϕ : R+ → R+ : ϕ is a Lebesgue integral
mapping which is summable, nonnegative and satisfies
ε
∫

0
ϕ(t)dt > 0, for eachε > 0}. The ballB(x, r),

whereB(x, r) =

{

y∈ X :
∫ dl (x,y)

0
ϕ(t)dt ≤ r

}

is a generalized closed ball in dislocated metric space, for
somex∈ X andε > 0.

2 Fixed point results

We now prove some fixed point results for(α0,ψ)−
contraction mappings of integral type in complete
dislocated metric space.

Theorem 1. Let (X,dl ) be a complete dislocated metric
space and S,T : X → X be two mappings. Suppose there
exist a functionα0 : X ×X → [0,+∞) such that the pair
(S,T) is α0-admissible. For r> 0, x0 ∈ X, assume that,

x,y∈ B(x0, r), α0(x,y)≥ 1

implies

∫ dl (Sx,Ty)

0
φ(t)dt ≤ ψ

(

∫ dl (x,y)

0
φ(t)dt

)

(1)

whereφ ∈̥, ψ ∈Ψ , and

j

∑
i=0

ψ i
(

∫ dl (x0,Sx0)

0
φ(t)dt

)

≤ r (2)

Suppose that for any sequence{xn} in B(x0, r) such that
α0(xn,xn+1)≥ 1 for all n ∈ N∪{0} and xn → u∈ B(x0, r)
as n→+∞ thenα0(xn,u)≥ 1 for all n ∈ N∪{0}.

Then, there exists a pointx∗ in B(x0, r) such that
x∗ = Sx∗ = Tx∗.

Proof. Let x1 in X be such thatx1 = Sx0 and x2 = Tx1.
Continuing this process, we construct a sequencexn of
points inX such that,

x2i+1 = Sx2i, and x2i+2 = Tx2i+1, wherei = 0,1,2, . . . .

Sinceα0(x0,x1) ≥ 1 thenα(x0,x1) ≥ η(x0,x1) otherwise
α0(x0,x1) = 0, and the pair(S,T) is α0-admissible we
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have, α(Sx0,Tx1) ≥ η(Sx0,Tx1) from which we deduce
that α(x1,x2) ≥ η(x1,x2) which also implies that
α0(x1,x2) = 1 then α(x1,x2) ≥ η(x1,x2) otherwise
α0(x1,x2) = 0, and the pair(S,T) is α0-admissible we
have α(Tx1,Sx2) ≥ η(Tx1,Sx2) implies α0(x2,x3) = 1
otherwise α0(x2,x3) = 0. Continuing in this way we
obtain α0(xn,xn+1) = 1 then α(xn,xn+1) ≥ η(xn,xn+1)
otherwiseα0(xn,xn+1) = 0, for all n ∈ N∪{0}. First we
show thatxn ∈ B(x0, r) for all n ∈ N. Using inequality
(2.2), we have,

n

∑
i=0

ψ i
(

∫ dl (x0,Sx0)

0
φ(t)dt

)

≤ r.

It follows that,
x1 ∈ B(x0, r).

Let x2, · · · ,x j ∈ B(x0, r) for some j ∈ N. If j = 2i + 1,
where i = 0,1,2, . . . j−1

2 so using inequality(1), we
obtain,
∫ dl (x2i+1,x2i+2)

0
φ(t)dt =

∫ dl (Sx2i ,Tx2i+1)

0
φ(t)dt

≤ ψ
(

∫ dl (x2i ,x2i+1)

0
φ(t)dt

)

≤ ψ2
(

∫ dl (x2i−1,x2i)

0
φ(t)dt

)

≤ ·· · ≤ ψ2i+1
(

∫ dl (x0,x1)

0
φ(t)dt

)

.

Thus we have,
∫ dl (x2i+1,x2i+2)

0
φ(t)dt ≤ ψ2i+1

(

∫ dl (x0,x1)

0
φ(t)dt

)

. (3)

If j = 2i + 2, then asx1, x2 ...,x j ∈ B(x0, r) where(i =
0,1,2, . . . , j−2

2 ). We obtain,

∫ dl (x2i+2,x2i+3)

0
φ(t)dt ≤ ψ2(i+1)

(

∫ dl (x0,x1)

0
φ(t)dt

)

. (4)

Thus from inequality(3) and(4), we have

∫ dl (xj ,xj+1)

0
φ(t)dt ≤ ψ j

(

∫ dl (x0,x1)

0
φ(t)dt

)

. (5)

Now,
∫ dl (x0,xj+1)

0
φ(t)dt =

∫ dl (x0,x1)

0
φ(t)dt+

∫ dl (x1,x2)

0
φ(t)dt

+

∫ dl (x2,x3)

0
φ(t)dt+ ...

+

∫ dl (xj ,xj+1)

0
φ(t)dt

≤
j

∑
i=0

ψ i
(

∫ dl (x0,x1)

0
φ(t)dt

)

≤ r.

Thusx j+1 ∈ B(x0, r). Hencexn ∈ B(x0, r) for all n ∈ N.
Now inequality(5) can be written as

∫ dl (xn,xn+1)

0
φ(t)dt≤ψn

(

∫ dl (x0,x1)

0
φ(t)dt

)

, for all n∈N.

(6)
Fix ε > 0 and let n(ε) ∈ N such that

∑ψn
(

∫ dl (x0,x1
0 φ(t)dt

)

< ε. Let n,m ∈ N with

m> n> k(ε), using the triangular inequality, we obtain,

d(xn,xm)≤
m−1

∑
k=n

d(xk,xk+1) (7)

Now from (6) and(7), we have

∫ dl (xn,xm)

0
φ(t)dt ≤

m−1

∑
k=n

ψk
(

∫ dl (xk,xk+1)

0
φ(t)dt

)

≤ ∑
n≥n(ε)

ψk
(

∫ dl (x0,x1)

0
φ(t)dt

)

< ε.

Hence{xn} is a Cauchy sequence in(B(x0, r),dl ). Since
X is complete dislocated metric space, so there existsx∗ ∈
B(x0, r) such thatxn → x∗. Also

lim
n→∞

(

∫ dl (xn,x∗)

0
φ(t)dt

)

= 0. (8)

On the other hand, from (ii), we have

α(x∗,xn)≥ η(x∗,xn) for all n∈ N∪{0}.

Now using triangle inequality, together with(1), we get

∫ dl (Sx∗,x2i+2)

0
φ(t)dt≤ψ

(

∫ dl (x∗,x2i+1)

0
φ(t)dt

)

<

∫ dl (x∗,x2i+1)

0
φ(t)dt.

Letting i → ∞ and by using inequality(8), we obtain
dl (Sx∗,x∗)< 0. HenceSx∗ = x∗. Similarly by using

∫ dl (Tx∗,x2i+1)

0
φ(t)dt≤ψ

(

∫ dl (x∗,x2i)

0
φ(t)dt

)

<

∫ dl (x∗,x2i)

0
φ(t)dt,

we obtaindl (Tx∗,x∗) = 0, that is,Tx∗ = x∗. HenceSand
T have a common fixed point inB(x0, r).

If α0(x,y) = 1 in Theorem1 then, we have the
following Corollary.

Corollary 1. Let (X,dl) be a complete dislocated metric
space and S,T : X → X be two mappings. Suppose there
exist a functionα0 : X ×X → [0,+∞) such that the pair
(S,T) is α0-admissible. For r> 0, x0 ∈ X, assume that,

α(x,y) ≥ η(x,y) implies

∫ dl (Sx,Ty)

0
φ(t)dt ≤ ψ

(

∫ (dl (x,y)

0
φ(t)dt

)

(9)
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whereφ ∈̥, ψ ∈Ψ , x,y∈ B(x0, r) and

j

∑
i=0

ψ i
(

∫ dl (x0,Sx0)

0
φ(t)dt

)

≤ r (10)

Suppose that for any sequence{xn} in B(x0, r) such that
α0(xn,xn+1)≥ 1 for all n ∈ N∪{0} and xn → u∈ B(x0, r)
as n→+∞ thenα0(xn,u)≥ 1 for all n ∈ N∪{0}.

Then, there exists a pointx∗ in B(x0, r) such thatx∗ =
Sx∗ = Tx∗.

If S= T, andα0(x,y) = 1 in Theorem1 then, we have
the following Corollary.

Corollary 2. Let (X,dl ) be a complete dislocated metric
space and T: X →X be two mappings. Suppose there exist
two functions,α,η : X ×X → [0,+∞) such that T isα-
admissible with respect toη . For r > 0, x0 ∈ X, assume
that,

α(x,y)≥ η(x,y)⇒

∫ dl (Tx,Ty)

0
φ(t)dt ≤ ψ

(

∫ (dl (x,y)

0
φ(t)dt

)

(11)

whereφ ∈̥, ψ ∈Ψ , x,y∈ B(x0, r) and

j

∑
i=0

ψ i
(

∫ dl (x0,Tx0)

0
φ(t)dt

)

≤ r (12)

Suppose that the following assertions hold:

(i)α(x0,Tx0)≥ η(x0,Tx0);
(ii)for any sequence {xn} in B(x0, r) such that

α(xn,xn+1) ≥ η(xn,xn+1) for all n ∈ N ∪ {0} and
xn → u∈ B(x0, r) asn→+∞ thenα(xn,u)≥ η(xn,u)
for all n∈ N∪{0}.

Then, there exists a pointx∗ in B(x0, r) such that
Tx∗ = x∗.

If φ(t) = 1 in Corollary 1, we obtain the following
Corollary.

Corollary 3. Let (X,dl ) be a complete dislocated metric
space and S,T : X → X be two mappings. Suppose there
exist two functions,α,η : X ×X → [0,+∞) such that the
pair (S,T) is α-admissible with respect toη . For r > 0,
x0 ∈ X, andψ ∈Ψ assume that,

α(x,y)≥ η(x,y)⇒

dl (Sx,Ty)≤ ψ ((dl (x,y)) (13)

x,y∈ B(x0, r) and

n

∑
i=0

ψ i (dl (x0,Sx0))≤ r. (14)

Suppose that the following assertions hold:

(i)α(x0,Sx0)≥ η(x0,Sx0);
(ii)for any sequence {xn} in B(x0, r) such that

α(xn,xn+1) ≥ η(xn,xn+1) for all n ∈ N ∪ {0} and
xn → u ∈ B(x0, r) as n → +∞, then
α(xn,u)≥ η(xn,u) for all n∈ N∪{0}.

Then, there exists a pointx∗ in B(x0, r) such that
x∗ = Sx∗ = Tx∗.

If α (x,y) = 1 in Corollary3, we obtain the following
Corollary.

Corollary 4. Let (X,dl ) be a complete dislocated metric
space and S,T : X → X be two mappings. Suppose there
exists,η : X ×X → [0,+∞) such that the pair(S,T) is
η-subadmissible. Forψ ∈Ψ , assume that,

η(x,y)≤ 1⇒ dl (Sx,Ty)≤ ψ(dl (x,y)) (15)

x,y∈ B(x0, r) and

j

∑
i=0

ψ i(dl (x0,Sx0))≤ r. (16)

Suppose that the following assertions hold:

(i)η(x0,Sx0)≤ 1;
(ii) for any sequence{xn} in B(x0, r) such that

η(xn,xn+1) ≤ 1 for all n ∈ N ∪ {0} and
xn → u∈ B(x0, r) asn→+∞ thenη(xn,u)≤ 1 for all
n∈ N∪{0}.

Then, there exists a pointx∗ in B(x0, r) such that
x∗ = Sx∗ = Tx∗.

If η(x,y) = 1 in Corollary1, we obtain the following
Corollary.

Corollary 5. Let (X,dl ) be a complete dislocated metric
space and S,T : X → X be two mappings. Suppose there
exist two functions,α,η : X ×X → [0,+∞) such that the
pair (S,T) is α-admissible with respect toη . For r > 0,
x0 ∈ X, assume that,

α(x,y)≥ 1⇒

∫ dl (Sx,Ty)

0
φ(t)dt ≤ ψ

(

∫ (dl (x,y)

0
φ(t)dt

)

(17)

whereφ ∈̥, ψ ∈Ψ , x,y∈ B(x0, r) and

n

∑
i=0

ψ i
(

∫ dl (x0,Sx0)

0
φ(t)dt

)

≤ r. (18)

Suppose that the following assertions hold:

(i)α(x0,Sx0)≥ 1;
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(ii)for any sequence {xn} in B(x0, r) such that
α(xn,xn+1) ≥ 1 for all n ∈ N ∪ {0} and
xn → u∈ B(x0, r) asn→+∞ thenα(xn,u)≥ 1 for all
n∈ N∪{0}.

Then, there exists a pointx∗ in B(x0, r) such that
x∗ = Sx∗ = Tx∗.

If η(x,y) = 1 in Corollary 3, we have the following
Corollary.

Corollary 6. Let (X,dl ) be a complete dislocated metric
space and S,T : X → X be two mappings. Suppose there
exist two functions,α : X × X → [0,+∞) such that the
pair (S,T) is α-admissible. For r> 0, x0 ∈ X, andψ ∈Ψ
assume that,

α(x,y)≥ 1⇒

dl(Sx,Ty)≤ ψ ((dl (x,y)) (19)

x,y∈ B(x0, r) and

j

∑
i=0

ψ i(dl (x0,Sx0))≤ r (20)

Suppose that the following assertions hold:

(i)α(x0,Sx0)≥ 1;
(ii)for any sequence {xn} in B(x0, r) such that

α(xn,xn+1) ≥ 1 for all n ∈ N ∪ {0} and
xn → u∈ B(x0, r) asn→+∞ thenα(xn,u)≥ 1 for all
n∈ N∪{0}.

Then, there exists a pointx∗ in B(x0, r) such that
x∗ = Sx∗ = Tx∗.

If S = T in Corollary 6, we obtain the following
Corollary.

Corollary 7. Let (X,dl ) be a complete dislocated metric
space and T: X → X be two mappings. Suppose there
exist two functions,α : X ×X → [0,+∞) such that T is
α-admissible. For r> 0, x0 ∈ X, andψ ∈Ψ , assume that,

α(x,y)≥ 1⇒

dl (Tx,Ty)≤ ψ ((dl (x,y)) (21)

x,y∈ B(x0, r) and

j

∑
i=0

ψ i(dl (x0,Tx0))≤ r. (22)

Suppose that the following assertions hold:

(i)α(x0,Tx0)≥ 1;

(ii)for any sequence {xn} in B(x0, r) such that
α(xn,xn+1) ≥ 1 for all n ∈ N ∪ {0} and
xn → u∈ B(x0, r) asn→+∞ thenα(xn,u)≥ 1 for all
n∈ N∪{0}.

Then, there exists a pointx∗ in B(x0, r) such that
Tx∗ = x∗.

Example 2.Let X = R+∪{0} and be endowed with usual
order and letdl : X × X → X be the complete ordered
dislocated metric onX defined bydl (x,y) = x+ y. Let
S,T : X → X be defined by,

Sx=

{ x
5

if x∈ [0,1]

x− 1
2 if x∈ (1,∞)

and

Tx=

{ 2x
5

if x∈ [0,1]

x− 1
4 if x∈ (1,∞).

Considering,x0 = 1, r = 2, thenB(x0, r) = [0,1], and

α(x,y) =

{

1if x,y∈ X;
0 otherwise.

Clearly, the pair(S,T) is an α-ψ-contractive mapping
with ψ(t) = t

2. Now,

dl (x0,Sx0) = dl (1,S1) = dl (1,
1
5
) = 1+

1
5
=

6
5

n

∑
i=0

ψn(dl (x0,Sx0)) =
6
5

n

∑
i=0

1
2n <

3
2
(
6
5
) =

9
5
< 2

Also if x,y ∈ (1,∞), then

2x+2y−
3
2
> x+ y

(x+ y−
3
4
) >

x+ y
2

x+ y−
3
4
> ψ(x+ y)

dl (Sx,Ty) > ψ(dl (x,y))

Then the contractive condition does not hold onX. Also
if, x,y∈ B(x0, r), then

2x
5
+

4y
5

≤ x+ y

x
5
+

2y
5

≤
x+ y

2
x
5
+

2y
5

≤ ψ(x+ y)

dl (Sx,Ty) ≤ ψ(dl (x,y)).
∫ dl (Sx,Ty)

0
φ(t)dt ≤ ψ

(

∫ dl (x,y)

0
φ(t)dt

)

.
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Theorem 2.Adding condition ”if p is any common fixed
point inB(x0, r) of S and T, x be any fixed point of S or T in
B(x0, r), thenα0(x, p) ≥ 1” to the hypotheses of Theorem
15. Then S and T have a unique common fixed point p and
dl (x, p) = 0.

Proof.Assume thatq be another fixed point ofSandT in
B(x0, r), then, by assumption,α0(p,q) ≥ 1 implies
α(p,q)≥ η(p,q), otherwiseα0(p,q) = 0.

∫ dl (p,q)

0
φ(t)dt <

∫ dl (p,q)

0
φ(t)dt.

Which contradiction to the fact that for eacht > 0, ψ(t)<

t. So
∫ dl (p,q)

0 φ(t)dt = 0 thendl(p,q) impliesp= q. Hence
SandT have no fixed point other thanp. Now, α0(p, p)≥
1 impliesα(p, p)≥ η(p, p), otherwiseα0(p, p) = 0, then,

∫ dl (p,p)

0
φ(t)dt =

∫ dl (Sp,T p)

0
φ(t)dt≤ψ

(

∫ dl (p,p)

0
φ(t)dt

)

.

This implies that,
dl (p, p) = 0.

Remark.(i) Every modified closed ball is a closed ball by
settingϕ(t) = 1 overR+.

(ii) Every contractive condition of integral type
automatically includes a corresponding contractive
condition, not involving integrals, by settingϕ(t) = 1
overR+.

3 Conclusion

In this approach, the main aim of our paper is to introduce
new concepts of an integral type closed ball and establish
common fixed point results of integral type contractive
mapping in complete dislocated metric space. Existennce
of fixed point results of such type of contraction on closed
ball in complete metric space are established. In this
article we observe that the integral type contraction
automatically includes a corresponding contractive
condition, not involving integral, by settingϕ(t) = 1. The
study of results is very useful in the sense that it requires
the integral type contraction mapping only on the closed
ball instead on the whole space. The new concepts lead to
further investigations and applications. It will be also
interesting to apply these concepts in a different metric
spaces.
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