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Abstract: In this paper, a new fractional spline method of non-polyr@fiorm have been considered to solve special linear oaeli
boundary-value problems. Using this fractional splinection a few consistency relations are derived for compuéipgroximations
to the solution of the problem. Convergence analysis arat estimates of this methods are discussed. Numericaltsema provided
to demonstrate the superiority of our methods.
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1 Introduction fourth- order two point boundary value problems
occurring in a plate deflection theory. For more details on

During the past three decades, fractional diﬁerentimnon_l—_pr)]olynomialbsplir_\e W? mhay also refer m$’.6’7]' |
equation has gained importance due to its applicability in e main objective of the present paper is to apply a

diverse fields of science and engineering, such as, contrJfaCt'o':‘al spline of non—pol_yr_lom|al formto deve_lop anew
theory, viscoelasticity, diffusion, neurology, and stitis numerical method for obtaining smooth approximations to

(see P]). Several forms of fractional differential the solution of the generalized Bagley-Torvik equation of

equations have been proposed in standard models, aﬁHefOfm [7.22,23,24,25:
there has been significant interest in developing numerical D2ay(x) +(NDY + u)y(x)
schemes for their solution (se® 15,16,17,18,19)). — f(x), a=L15,xe [ab] )

In the last few decades, there has been much effort to ’ o T
develop numerical methods based on non-polynomialSubject to boundary conditions:
spline approximations for the solution of many types of y(@)=y(b) =0 @)
boundary value problems. For example, Akram et &. [
presented a second-order method using a non- polynomiathere n,u are all real constants. The functidi{x) is
spline for solving a sixth-order boundary value problem continuous on the intervala,b] and the operatoD?
with boundary conditions involving first derivatives. represents the Caputo fractional derivative. Whes: 1,
Jalilian et al. P] established the numerical solutions of then equation) is reduced to the classical second order
Problems in Calculus of Variations wusing a boundary value problem.
non-polynomial spline and Islam et allQ] have solved The analytical solution of probleni) with boundary
some special fifth-order boundary value problems. Islamconditions 2) cannot be determined for any arbitrary
and Tirmizi [11] and Al-Said [L2] have solved a system of choice ofn, u and f(x).We therefore employ numerical
second-order boundary value problems. Ramadan et amethods for obtaining approximate solution to the
[13] have solved second-order two-point boundary valueproblem [Equationsl)-(2)].
problems using polynomial and non-polynomial spline  To show the practical applicability and superiority of
functions. Ramadan et al. 14 have developed ourmethod, some numerical evidence isincluded and their
nonpolynomial septic spline functions for obtaining pertaining approximate solutions are compared with the
smooth approximations to the numerical solution of exact solutions.
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2 Preliminaries and Notations wherea;, b, ¢; andd; are constants arklis the frequency
of the trigonometric functions which will be used to raise

In this section, we give the definition of the accuracy of the method. For convenience consider the
Riemann-Liouville fractional integral and fractional following relations:

derivative with the Caputo fractional derivative and the

Grunwald fractional derivative. R(%)=Vi, R(Xs1) = Yiz1, (D¥?)2R(x) = M;, @)

7
Definition 1.[2,3] The Riemann-Liouville fractional (D¥?)?R(Xi11) = Miz1, i=0(1)n—1.
integral of ordera > O is defined by

Via a straightforward calculation we obtain the values of

X
19 £ (x) = 1 / (x— &)I L (E)dE, n—1<a <neN. a;,bi, ¢ andd; as follows:
I'(O!) a
whererl is the gamma function. a=Yi+ k_zla (8)
Definition 2.[2,3] The Riemann-Liouville fractional b= Y Y Mii1—Mi ©)
derivative of ordem > O is defined by '~ hlb 6k 7
Mjcos.560 — My
a — Hi—
D f](-X) = dn ) CI kzsin]_'S 6 9 (10)
- __z\n—-a-1 _ Mi
l'(n—a)dx”/a(x £ 1f(§)dE, n—1<a <neN. o—— 1)
Definit.ion 3..[1] The Caputo fractional derivative of order \ynereg — kh® and fori = o()n— 1.
a > Ois defined by Using the continuity conditions
DY f(x) — D¥2R_1(x) = D¥?R(x) we have the following
1 < an consistency relations:
- _z\h—a-1_*Y _
F(n—a)/a(x &) den (&)dé,n—1<a<neN. 1 ey
he (Yie1— 2y +Vi-1)
Definition 4.[1,2,3] The Grunwald definition for _ . .
fractional derivative is: =AMis1+2BMi+AMi-g, i=2(1)n-1.  (12)
. 1N where
DY) = M o 3 Gaiyx—K) (@) o
- )\:ﬁ(—ecsqye—o, and
where the Giinwald weights are: 3vm
1 4
_ r(k-a) B=§(1—mecota6>,
ok = Fa)r (k+ 1) @
whered = knh'® and
3 Nonpolynomial Fractional Spline Method Mi = fi—uS —nD¥2S(X)[x—x, i=0(1)n  (13)
In th_is section: we obtain an approximate solution. of theyyitn fi = f(x). Now to determine D3/25(x)|x=xi,
fractional (;ilfferentlal equation 157(2) using = o(1)n, we use the fact that
non-polynomial fractional spline functions. For this
purpose, we introduce a finite set of grid poinsby L&
dividing the intervala, b] into n- equal parts. (w+1)"=% (k>Wk7 foreachw| <1,p>0
K=0
. b—a .
xi=a+ih,Xp=a,xp=b,h=—— i=01)n. (5)  where
: r\ (=D (k=)
Lety(x) be the exact solution of the equatidr) &ndS be k) (=) (k+1)

an approximation tg; = y(x;) obtained by the segment _ _
R(x) passing through the points;,S) and (X1, S+1) If we setw = -1 @hen the aboye summation will be
then in each subinterval the fractional spline segmenﬁ’a”'Sh?d- From which together "X"h equatieh (e can
R(x) has the form: approximate the fractional ternQ¥S(x)|x=x, i = 0(1)n,
as follows:
R(X) = a + bi(x— %)% + ¢ sin s k(x — x;)¥/2

i
+dicogsk(x—x)¥2, i=0(1)n. 6)  DISX)lx~h™C kzogouk S(x —kh),  fori=0(1)n
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where the Grinwald weightg, « are given in equatiordj. Our main purpose now is to derive a bound ||
Hence we have From the equationl@®) we can write the error term as
D¥28(X)[xx, ~ E = (I + uh3P 1B+ nh5p-1BG) 1P 1T.

| . . .
h-L5 %gl.&k S(x —kh), fori=0(1)n. (14)  Whichimplies that
k=
IEll =

3p—1 15p—-1 1
4 Convergence Analysis H +HNPTB+nh°P7BG) H [PHI-ITI (9)
In order to derive the bound dfE||, the following two

Here we investigate the error anaIyS|s of the spllne metho?emmas are needed

described in sectio. LetY = (yi), S=(s), T = () and _ _
E=(g) =Y —Shben—1 dimensional cqumn vectors Lemma 4.1.[19) If N is a square matrix of ordar and
Then, we can write the system given H3] as follows: IN|| <1, then(l + N)~* exists and
PS=h’BM (15) N < —L
0= g

where the matriceB andB are given below
Lemma 4.2.The matrix(P + uh®B + nh'®BG) given in

—2,fori=j=1(1)n-1 Eq. (18) is nonsingular if
Rj=1¢1 forli—jj=1

0, otherwise (U+2nmh 9w < 1, wherew = % ((b—a)?+h?).
The tridiagonal matriB is given by
Proof. Let
2B A
A 2B A H = uh?P~1B+ nh®5p~1BG. (20)
B= IR It was shown, in4], that
A28 A
A 2B h-2

P~Y| < 5 ((b—a)?+h?) =wh2, (21)
The vectoM can be written as:
and from the systerB, for A + 3 = % andA # 1_%0- we

M =F —uS—nh °Gs (16)  have
Where the vector§ and the matrixG are given below 1B =1, (22)
respectively:
. and from the syster®, we have
F=(f1 f2 .. fa2 foa), 17)
n-2
and Il = > [Gaxl;
i;) ¢
Ji50 . .
0151 Oi50 which, together with the fact thafis0 = 1 andgis1 =
G- . o —1.5, leads to
015n-3915n-4 ... 9151 0150 IIG|| <2m, forall(m—1)<15<m. (23)

O15n-2915n-3 --- 0152 0151 9150 . . . .
Substituting equations2()—(23) into equation 20) and

whereg; 5 are the Griinwald weights as given in equation then using our assumption we obtain

(4) with o = 1.5.
Substituting from equatiorL{) into equation {5) we [H] <1 (24)
get. 2p-1 2 ap-lpeay-1
3 15 3 Then by lemma 4.1(l + ph“P~*B+ nh= “P~"BG)
(P+ uh®B + nh5BG)S= h3BF, exiots and
and 3p-1 155-1pay -1
(P4 uh®B+nh'*BG)Y = h®BF 4 T. [(1+uh*P™"B+nh="P~"BG) || <
Hence ST 1 AT . (25)
T = (P+ ph®B+nh'°BG)E. (18) 1— ph3|[P1{||[B]| — nh>[[P~1{||[B]|[|G]|
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This completes proof of the lemnia Table 1: Exact, approximate and absolute error for Example 5.1.
As a result of the above lemma, the discrete boundary a=15andA =B =3
value problem 15 has a unique solution if X Exact Approximation  Absolute Error
(u 4+ 2nmh 5w < 1. Expanding 12) in fractional 5 5 5 5
Taylor's series aboug we obtain 0125 —0.0002140 —0.0000909 1231000 — 04
T hoM > 0.250 —-0.0029297 —0.0000579 2871800& — 03
[Tl = €10°Ma (26) 0375 00123596 -0.0002619 1209762 — 02
where 0.500 —-0.0312500 —0.0009829 026708 — 02

0.625 —0.0572200 —0.0020054 521500£& — 02

Mg = max (D3/ 2)4y(x) 0.750 —00791000 —0.0028265 7627499 — 02
asx<b 0875 —0.0732730 -00023161 70956586 — 02
Hence using equatiori®) we have 1 0 0 0
IE| < [P~
1— ph3|[P=L][[B]| — nhS|[P-L][|[B]l||G||
= 0(h"). (27) .

In view of lemma 4.2, we can conclude the following
theorem: 0.8

Theorem 4.1. Let y(x) be the exact solution of the
continuous boundary value problefd) — (2) and let
y(x), 1 = 1(1)n— 1, satisfy the discrete boundary value
problem (15). Moreover, if we sete =y, — 5, then
|E| = O(h*) as given by equatiori27), neglecting all 04
errors due to round off. '
0.2 1

5 Computational Results

To illustrate our method and to demonstrate its 0 - : - - -
. - 0.2 ™ 0.6 0.8 1
convergence and applicability of our presented methods B
computationally, we have solved two fractional boundary [—— Analytical Solution Numerical Solution|
value problems. All calculations are enforced with
MATLAB 12b and MAPLE 15. Fig. 1: Exact and approximate solutions of Example 5.1do&
Example 5.1.Consider the boundary value problem 1.65.
(D* +nD + ) y(x) = f(x), (28)
where where
12k 24
f(x) = ux*(x— 1)+ nx*“ ( — ) —a
r6—a) r(s-a F(x) = we(x— 1)+ 12069 (1T _X
120x 24 r6—a) r(6-2a)
+xA-2a ( — (29) n -
r6—2a) r(-2a))’ 40— B 1
R0 Fe—a)  Fe_20) ) ()
subject to the boundary conditigri0) = y(1) = 0. The
exact solution of this problem is with the boundary conditioy(0) = y(1) = 0. The exact
solution is
y(x) =x*(x—1). ,
y(x) =x" —x°.

The numerical solutions and absolute errors for the
valuesA = 3 = %1, u=1n=05anda =15 are The numerical results obtained, for the values of
demonstrated in Tablel. Moreover, the exact and o = 15 = 18 =24 py=1n =05, and for
numerical solutions are exhibited in Figurgé for 0 < x < 1, are shown in Tabl&, together with absolute
o =1.65. errors, to illustrate the accuracy of the proposed method.
Example 5.2.Consider the fractional differential equation Also, exact solution and approxmate solution for various

values of step sizb = 8, 16, andh = 32 are represented
D?y(x) + n DYy(x) 4 py(x) = f(x), (30)  inFigure2for o =1.70.
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Table 2: Exact, approximate and absolute error for Example 5.2.

H:17n:0~57a:1.5and)\:%75:%

X Exact Approximation Absolute Error

0 0 0 0
0.125 —-0.00003004 —0.00956430 $342598% — 03
0.250 —0.00091552 —0.01995814 19042619E& — 02
0.375 —0.00637292 —0.03206469 5691767& — 02
0.500 —0.02343750 —0.04607803 2640537E —02
0.625 —0.05811452 —0.05944937 13348511F —03
0.750 —0.10382080 —0.06402991  P790885E — 02
0.875 —0.12021303 —0.04230987  77903156E& — 02

1 0 0 0

-0.02

-0.04

-0.06

-0.08

-0.10

-0.12

= Analytical Solution

Numerical Solution n=8
== Numerical Solution n=16
Numerical Solution n=32

Fig. 2: Exact and approximate solutions of Example 5.2 with
variable step size.

Example 5.3.Consider the fractional differential equation
[26]:

y" (%) +D®y(x) +2y(x) =

1062+ v/2e%erf (\/z—x) , (32)

with the initial conditions

0) =1 )/(0) =2, )//(0) =

whereerf is the error function defined by

(33)

_ 2
ﬁ/ e dt.

The exact solution 0f32)—(33) is y(x) = €.
The absolute errdy(x) — s(x)| for different values of
n are listed in Table.

erf(x) =

Table 3: Observed absolute errors in Example 5.3.
n Our method with Method in Ref2f)]

o= 24 andg = 11 57 withm=3
5 8.488(E — 05 1130& — 04
10 1379% - 05 7.016E — 06
15 3447%E — 06 4378 — 07

6 Conclusion

The approximate solutions of linear fractional boundary-
value problems using the nonpolynomial fractional spline
method, show that this method is better in the sense of
accuracy and applicability. These have been verified by the
absolute errorgg |, given in the tables above.
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