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Abstract: The dynamics of influenza A (HLIN1) model with delays has béedisd. We begin this model with proving the positivity
and boundedness of the solution. We establish sufficiendittons for the global stability of equilibria (infectioftee equilibrium
and infected equilibrium) are obtained by means of Lyapubna8alle invariance principle. We prove that if the basicroelpiction
numberRy < 1 the infectious population disappear so the disease diewbile if Ry > 1 the infectious population persist. Numerical
simulations with application to HIN1 model is given to vetifie analytical results.
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1 Introduction developed a simple ode model for influenza A (HIN1)
dynamics. They defined the model as five compartments:
but they were considering the four compartments: cells
dhat are suspected, cells that are vaccination, cells teat a
pxposed, and cells that are infectious. They described the
dynamics of these populations by a system of four
r ordinary differential equations.

Mathematical models describing the dynamics of
infectious diseases are of great public health importanc
because they provide insights on implementing practica
and efficient disease-control strategi@s2[3]. Epidemic

models have long been an important tool fo
understanding and controlling the spread of infectious

diseases. Most of them are described by delayed |, this paper, we incorporate a two discrete delays to
differential equations. The introduction of time delay is he model to describe the time between infectious and
often used to model the latent period, that is, the timegsceptible cells and the emission of exposed cells. The
from the acquisition of infection to the time when the host resulting model is a system of two delay-differential
becomes infectious]. Most of the authors assume that gqations. To determine the dynamics of the delay model,
the latent period of diseases is negligible, i.e. onceye sydy the transcendental characteristic equation of the
infected, each susceptible individual (S) instantangousl |inearized system at the positive infected steady state and
becomes infectious (1), and later recovers (R) with @gptain analytic conditions on the parameters under which
permanent or temporary acquired immunity. Theseihe jnfected steady state is globally asymptotically stabl
epidemic models are customarily called SIR (susceptiblenmerical simulations are carried out to illustrate the
infectious, recovered) model$,B,7,8]. It is known that  jpiqined results.

for some diseases, such as influenza and tuberculosis, on

adequate contact with an infectious individual, a

susceptible becomes exposed for a while; that is, infected The paper is organized as follows. We investigate the

but not yet infectious. Thus it is realistic to introduce a model description for HLN1 model dynamics in section 2.

latent compartment. The local and global stability of the infected-free
Time delays of one type or another have beenequilibrium and infected equilibrium are studied in

incorporated into biological models by many authors (for section 3. In section 4, we examine the stability results

example, §,10,11,12,13 14,15] and the references cited through numerical illustration. Finally, we end with

therein). In 2012, Xueyong Zhou and Zhen Guig][ conclusion in section 5.
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2 Model Description Table 1: Parameters description
Parameters Values Reference
In this paper, we propose the following SEIR epidemic A vanalialse Assumed
. . u 5.48 x10 °/day [17]
model for (HIN1) influenza with two delays. Xueyong q 0.001/day 18]
Zhou and Zhen Guollg], proposed on ODE model with ke 62/day [19
vaccination. In their study shows that higher values of 3 variable Assumed
vaccination rate® significantly reduce the number of > 0.14/day [20]

infected individuals, and lead to disease eradication. Our
model consisted of four types of cells: susceptible (those
who are capable of contracting the disease), exposed
(those who are infected but not yet infectious), infectiousstates: The infection free steady state
(those who are infected and capable of transmitting the
disease) and recovered (those who are permanently E-(SE.| R) — A 0.0.0
immune), denoted b(t),E(t),l(t) andR(t) respectively. oSELR) = Tha
N(t) is now given byN(t) = S(t) + E(t) + 1 (t) + R(t).

From [16], we have the following set of equation as The infected steady state

i |
odu; basic mode E (S E IR = <(kl+u)ﬁ(3(lj<j6+u)’ (d +kfp+ 1) (Ro—1),
i A—B((t)+nE®)SE) — (@+u)S(t), 1 5

7(R0_1)77(R0_1) ’

av B uB )
o PS(t) — (1—0)B(I(t) +nE)V(L) — uV(1),
a where BloA
o B((t) +nE)SH)+(1—-0)B((t)+nEM)V() Ro= Lk + (A + 0+ 1)

—kiE(t) — HE(1),
dl
gt~ aEO —dit) = al(t) —pi (), 3 Analysis of HIN1 model
dR
e Ol(t) — UR(t). (1) It is important to show that the positivity and the

, o boundedness for the systerl) (as they represent cell
~ We begin by considering sub-models df) and to  hopylations. Positivity implies that the cell population
introduce the two delays into the above system, we obtairyryives and boundedness may be interpreted as a natural

the model as follows: restriction to growth as a consequence of limited
ds resources. In this Section, we present some basic results,
o = A BIOSE) — s, such as the positivity and the boundedness of solution of
dE model Q).

ot = Pt-t)S{t—1) —kiE(t) - HE(D), ~ Now, we find out the positive solution of the zlewly
dl discussed modely. We denote byX = C([-7,0],R}),

— =k E(t—T12) —dI(t) — 3l (t) — ul (1), the Banach space of continuous function mapping the
dt interval [—7,0] into Ri, equipped with the sup-norm,
d_R — 51(t) — pR(t) ) where T = max{11,72}. By the standard theory of
dt ' functional differential equation[1,22,13], we know that
Where 1, represents the infectious and susceptiblefor @ny® € C([—1,0],R%), there exists a unique solution
individuals andr, is the time necessary for exposed to Z(t,0) = (S(t,9),E(t,0),1(t, 0),R(t, ®)),

become a infectious. The first equation from syst@n (

positive constanA represents the birth or immigration of the delayed systen?), which satisfyZo = @, where
rate, and the positive constantrepresents the death rate o, — (¢ g, g, ) € R4 with @ (&) >0:(& € [-1,0],i =

of susceptible.B is the infection rate. The second 1 . 4) andg (0),@(0), ;(0), @(0) > 0. And the initial
equation of system2, k; represents the transfer rate conditions are given by,

between the exposed and infectious andepresents the

death rate of exposed. The third equation of syst®nd( (&) = @(&), E(§) =@(E), 1(§) =@(&), R(E) = m(l).
represents the disease death ratagpresents the death ®)
rate of infectious and alsd represent the rate of recovery Proposition 3.1. LetZ(t, ¢) be the solution of the delayed
from the disease. The fourth equation of syst&t)) [ system B) with the initial conditions 8). Then
represents the death rate of recovery. Parameter values a8gt),E(t),1(t) andR(t) are all non-negative and bounded
described in Table I. (1 > 0) at which the solution exists.

Now, we simplified our model2), it has two steady
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Proof. Note that from 2), we obtain From the above matrix5], the characteristic equation for

t . the infection free steady state of the modgli§
S(t) = (0)e BIm+wdn | / Ae~ WBIm+H)dn g, )
0 A+ H)7[(A + (ke + p))(A +(d+ 3+ 1)) +

t
E() = E@e '+ [ piy-tsy-n) Pae =0, @

_(k _ —
R y>dVa wheret = 11 + 17 is the time delay. Thus the eigen values

B —(d+5+ )t B of the infection free steady state 4su, —u. Simplifying
I(t) = 1(0)e +/0 kE(y—2) the above equation 6], we lead the following
e—(d+6+u)(t—y)dy transcendental characteristic equation such as
t 2
R() = RO)e + [ 8l(y)e HtVdy. @) M Alatprdt 4 p)
0 (ke + H)(d+ 3+ H)(1—Roe A7) = 0. )

Using B), we haveZ(t, @) > 0, vt > 0. Hence for alt > 0,
our solution(S,E, 1, R) € R with all parameters ifR% .

Positivity immediately follows from the above integral
forms and equation3]. For boundedness of the solution,
we define

V() =St—1)+E{M)+1(t+12) + Rt + 12)
and p = min{y, u,d + p,u}. By non-negativity of the

Theorem 3.3. The infection free steady state of mod2) (
is locally asymptotically stable wheRy < 1 and unstable
whenRy > 1.

Proof. The characteristic Equatioid)(at the infection free

steady state can be rewritten as,
(A + (ke + YA+ (d+ 3+ ) = (ku+ ) (d+ 8+ )

solution, it follows that Roe . (8)
dv If the eigenvalue ofA in (8) has a non-negative real part,
GO =A-P{St-T)+EMD) +1(t+T2) + R{t+12)} then the modulus of the LHS o8) satisfies,

<A-pV(D). |4+ (ke + H)A + (d+ 3+ )] = (ke + )
This implies that V(t) is bounded, and so are (d+o+ ). 9

S(), E(), 1(t) andR(t). This completes the proof. while the modulus of the RHS 08] satisfies

The system ) will be analyzed in biologically |(ky+ p)(d+ S+ u)Roe 7| < |(Ky+ p)(d+ S+ )Ry|

feasible region as follows. Consider the feasible region < (ke+p)(d+8+p).
Q= {(S,E,I,R)eRi:S< é’ E,I,R> O} This leads a contradiction to8), Thus, all the
M N eigenvalues of§) have negative real part and hence the

infected free steady state of the mode) (s locally
From the above, we can establish the following asymptotically stable whelRy < 1.
theorem. WhenRy > 1, we define a function,
Theorem 32 T.hg'reglonQ' !s po.smvely invariant for the PA) = (A + (K + 1) (A + (d+ 3+ )
system ) with initial conditions inR? . AT
Thus, the epidemic model of the HIN1 will be —(ki+p)(d+ 0+ p)Roe " (10)
considered inC([—7,0],R%). Further we will find the |t is clear thatp(0) < 0 andp(A) — o asA — «. By the
sufficient conditions on the parameters for the stability Ofcontinuity, we know that, there exist atleast one positive
the infection free and the infected steady states. root whenRy > 1. Thus,the infection free steady state of
the model ) is unstable wherRy > 1. From the above
matrix (5), the characteristic equation of the infected
steady state of the moddl)(is

(A +u+BI){A + ) A + (ka+ 1))

To study the local stability of the steady state of the (A +(d+5+u))+BS*k1e*“_}

system ), we linearized the system and obtained the pewrnr AT

characteristic equation, given by the following Jacobian +B°S1 ke (A + ) = 0. (11)
matrix,

3.1 Local stability analysis

Proposition 3.4. All the roots of the equationl{l) with

—(BI*+ ) 0 —BS’ 0 T = 0 have negative real parts if and onlyR§ > 1.
Bl*ei)\rl —(k1+i1) Bskei)\rl 0 (5) —_
0 kie A2 —(d+6+pu) 0 |° Now return to the study of equatiofh) with T > 0.
0 0 o —U.
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Theorem 3.5. The infected steady state of mode) (s holds. By continuity, the real part oA (T) becomes

locally asymptotically stable wheRo > 1 in the case of positive whenT > 7o and the steady state becomes
T>0. unstable. Moreover, a Hopf bifurcation occurs when

Proof. Suppose thaR, > 1. Then from Proposition 3.4, Passes through the critical valug(see P)).
the characteristic equatiof]) has negative real parts for

T = 0. Obviously the characteristic equatidii) does not

have any real solution. By Rouche’s theorem [4, p.n0.248],

it follows that if instability occurs for a particular valeg 3.2 Global stability analysis

the delayt, a characteristic root of the equatidii) must

intersect the imaginary axis. We shall consider the global stability of the infection free
If the equation {1) has a purely imaginary rogt = and the infected steady state of modlify the Lyapunov
iw, with w > 0, we get direct method. We define a functi@: R.o — R as
(fw+pu+BI") ((lw+ ) (iw+ (ke + 1)) G(u) =u—1—Inu.
(iw+(d+d0+n)) +BS*k1e*i“”) We note thatG(u) > 0 for anyu > 0 and has the global
+st&|*klefiwr‘(iw+ p) = 0. (12) minimum O atu = 1.

Theorem 3.6. The infected free steady state of mod®) (

Separating real and imaginary parts, we've is globally asymptotically stable whey < 1.

w’ay —ag = by cog w1), Proof. By Theorem 3.3, it suffices to prove that the
w® — wp = —by sin(wT). (13)  infection free steady statE, of model @) is globally
h attracting. We consider a Lyapunov functiond(t) as
where follows:

a1 =3u+d+d+ki+Ry—1,

ap = 32+ (Ro— 1) (kg + 2u + d + 8) + ked + k&
+u(2kg +d+39),

ag = U3+ (Ro— 1) (du +dky + 2 + -+ pky + Sky)

Ui(t) = (S—So—soln§> +E+1+B

[ noseae [ E©de.  an

+pked + p?d + pdky + ou? + pky, Calculating the time derivative dfi; along the positive

by = (ki + p)(d+ 3+ p)Ro. solutions of the modell(7), we obtain
Squaring and addind.8), we obtain % - (1_ %) d_S+ d_E + ﬂ
@0+ Ay + Apt? + Ag = 0 (14) dt S)dt  dt dt

re | +B(I0)S(H) — 1(t— T)S(t— 1)) +
wnere ka(E(t) — E(t—12))
AL = a%— 2ay, S
Po — a2 2858 = (1—§) (A—BIS—uS)+
Ag = ag—bj. (BI(t— 10)S(t — 11) — kaE(t) — HE(t)) +
Putw? = p in (14), we get (K E(t — 12) —dl — &l — pl)
h(p) = p°+Ap® + Agp+A3 =0, (15) FBIOSE) —I(t—12)St—11)) +

From the hypothesis ofRy > 1, we deduce that ke (B(t) — B(t—12)). (18)
Az = a% — b% > 0, since forRy > 1, A; and A, are also  Using the infection free steady state condition of modgl (
positive. Thus the equatiorl%) has no positive solution A= uSin (18), then the equatioril®) becomes

for Ry > 1. This completes the proof. du,

= L5274 (B (d+ 5+ )l — HE
Suppose that ifz < 0 or Az > 0 andA; < 0, by using <0 (19)
the Descartes’ rule of sign equatiokbf has positive root -
p* and thus equation1l®) has a purely imaginary roots It follows thatU4(t) is bounded and non-increasing and

+iayp. From transcendental equatidi®?), we obtain thus lim . Uy (t) exists. Note tha%;J—tl _ 0if and only if

2 i . .
ﬂ-:iarccos(al“’o a3>+21’77 {=012.(16) S=S1=R=0.UsingR=0in(2), wegetE=1=0.
Wo by Wo Therefore, the maximal compact invariant set in

Also, we can verify that the following transversality {% :O} is the singleton Eo. By the LaSalle

condition: dt

d _ d invariance principle for delay system2, the infection
gereA (M= = d—r—n(ﬂ|r—=r5 >0 free steady state of modeR)(is globally attracting.
(@© 2016 NSP
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Further, it was showed in Theorem 3.3, the infection freeUsing the infected steady state conditida- B1*S* + uS*

steady state is locally asymptotically stable wiign< 1.
Therefore, the infection free steady state of mo@glig
globally asymptotically stable wheRy < 1.

Theorem 3.7. The infected steady state of mode) (s
globally asymptotically stable wheRy > 1.

Proof. We consider a Lyapunov functional as follows:
S E I
Uz(t):§g<§)+Eg( )+Ig< >
d+o+u\_.. /S
(F5)re(s)

cpsi [ (3O 4

Sk
+ kE* t (E(E)> dé. (20)
t-, \ E*
Where
g(ui) =UuU—1—- In(ui)
S E |

and U1:§,U2: —*,U3: T ol

g(u) > 0 fori = 1,2,3,4. Positiveness and boundedness

of the solution of the modePR] implies thatU,(t) is well

defined andU,(t) > O for all t > 0. We calculate the

derivative ofU,(t) along the solution of the systen2)(
we obtain

du; S\ dS E*\ dE 1<\ dl

F‘(1_§>E+(1_E>E+(1_T>E
d+o+u R*\ dR
+(T> (1——> at "

* S S(t — Tl) (t — Tl)
Bg'(§F_ S+
+In S(t—'[lg(t—'l'l)) "
keE* (EE - E(tE_* ) i E“ETZ))

( )(fsla—msa—m KE(t) - HE(1))
N (1 '—)(klEa—rz) di ) — 51 (1) — i 1))
B

+ W) (1—%*) (81 — uR)
" S S(t — T1)| (t — Tl)
4+ S (w_—w
+InS(t—T1é:(t—T1)>
+kE*(:* E(téT2)+|nE(t;T2)) 21)

R
us = —. Moreover

anddl* = uR* in (21), then equationq1) becomes
_ _Hig g2 g s
= S(S SH -l §<1+g(s>

oS (5 ()
e (o2 (%))
([d+6+u)

d+5+u|W
(R-R")—

R
d+0+u)l* .
_% u(E_E)
<0
since
St—t)l(t—11) S
In—SI =1n S

St—1)l(t—1)E"
SI*E

+1In

El*
E*l
E(t—1) - E(t—m)l* E*l
n——¢ =In =T +|nEI*'
It follows thatU;(t) is bounded and non-increasing and
. dU,(t :
thus lim_,. Us(t) exists. Note tha{% =0ifand only
| = 1*, E =E* Et-T1T) = E* S=
S, St - rl) (t — 11) = S'I*. Therefore, the maximal

Uo(t)

. . .d . .
compact invariant set ir——~= = 0 is the singletorE*.

By the LaSalle invariance principle for delay systems in
[23], the infected steady state of modé#)) (is globally
attracting. Further,it was showed in Theorem 3.5, the
infected steady state is locally asymptotically stable mvhe
Ry > 1 and T > 0. Hence the infected steady state of
model @) is globally asymptotically stable whe®y > 1,

in the case of > 0.

+In

4 Numerical simulation

In this section, we carry out some numerical simulations
to display the qualitative behaviours of HIN1 model
(2)(see Figs. 10 (a) - 11 (b)) fit the model to given data.
The numerical simulations confirmed the theoretical
results obtained in Section 3. We have seen in previous
sections that the basic reproduction numBgrplays a
decisive rule in determining the HIN1 dynamics. It is
known that infected free and infected steady state is
locally asymptotically stable if all the roots of the
corresponding characteristic equatioiis &nd (L1) have
negative real parts (roots are located on the open left side
of the complex plandg.e,ReA; < 0,i = 1,2,...). The
precise values of the time delaysand 1, are unknown.
Here, we defined physiologically feasible intervals for
some parameter based on information, we assumed that
11 is < 3 days andr; is < 6 days, and estimated both of
them by using Table | values.
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4.1 Application Using the Table | values, all the characteristic roots of
the characteristic equation for the mod2B) has negative

For A= 04, B =0.000018 71 =3, T, = 6 and the real parts, wherRy < 1 . Similarly for infected steady

parameter values are taken from Table I. The sys®m ( state if Ry > 1, then all the characteristic roots of the

as follows characteristic equation for the modé5f has negative
ds real parts. Therefore our modél)(is always stable. The
P 0.4—0.000018(t)S(t) — 0.000054&t), plots of the characteristic equations as shown in Fig. 1(a)
- 2(b).
E
c:j_t = 0.000018(t — 11)S(t — 11) — 0.2E(t) Fgre 0(a) ) R 00)
—0.000054 (t) - ;
: % = 0.2E(t — 1) — 0.001I () — 0.14I(t) - ‘
—0.0000548(t), OZOZO — 5 +)
R 3x10
c;—t = 0.14 (t) — 0.000054&R(t). (22)
For the infected free steady state, we can ¢ 10000
Ry = 0.9312045472< 1. Moreover, the eigenvalues L T v T St ; ; B

0 E
lays) time {days)

associated with the characteristic equation2@) (
L(A,T14 T2) = A%2+0.3411096 + 0.02821868980
Fig. 1 (a) shows that the plot of the characteristic

—9A

~0.026773728 "% =0, (23) equation of the systen2p) for non-delay caseRp < 1).
Finally, we can see that the Theorem 3.3 is satisfied, wheffrig. 1 (b) shows that the plot of characteristic equation of
Ry < 1. Hence the infection free-steady state of modelthe systemZ2) for delay caseRp < 1).
(22 is locally asymptotically stable. This, together with
Theorems 3.6 implies that the global stability of
equilibria for system2) is completely determined by the e 11 (0 e 1106
reproduction numbeR,. !

For the infected steady statey = 1.164005684> 1
and usingA = 0.5, with the above same values Bf 1 e ax
andTt,, we obtain,

dS i) -6.x 10" o
e 0.5—0.000018(t)S(t) — 0.000054&t), 2
E -8.x 10" 1Lx10%
Z—t = 0.000018(t —11)S(t — 11) — 0.2E(t)
—0'000054E (t)7 ) ' 'X(‘)\M! '65:\”}3“/“"1(;)\)0 '2(‘!00 (‘J 6 Z‘U ”’il}\m:]éﬁ K‘O 100
I
% = 0.2E(t— 12) — 0.001 (t) — 0.14! (1)
Fig. 2 (a) shows that the plot of the characteristic
—0.0000548(t), -
equation of the system2{§) data for non-delay case
dR _ 0.141 (t) — 0.0000548R(t). (24) (Ro>1). Fig. 2 (b) shows that the plot of characteristic
dt equation of the systen2{) for delay caseRp > 1).
Then the characteristic equation 8¢,
L(A, 71+ T2) = A34+0.505170084 %+ 0.0841889134
+0.00462957190 From the above analysis, we can easily see that the
1.0.03284671538 %) — 0, (25) delay model seems to fit and it could be better than using

without delay. Thus, our numerical results are reasonable
Finally, we can see that the Theorem 3.5 is satisfied, whemepresentatives of our model. Moreover, small
Rp > 1. Hence the infected steady state of modd) (s perturbations of parameters will give small perturbation
locally asymptotically stable. This, together with of the matrix entries used in finding eigenvalues for
Theorems 3.7 implies that the global stability of determining the stability of two steady state points. The
equilibria for systemZ4) is completely determined by the stability results in our numerical calculation are
reproduction numbeR,. biologically reasonable and represent a qualitative

outcome that is possible for the parameter values.
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