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Abstract: This paper studies the fractional order model of a plant-herbivore. For this model, the stability of three fixed points are
analyzed. To solve and simulate the system of differential equations we utilized the Adams-Bashforth-Moulton algorithm.
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1 Introduction

During the past decades, several mathematical models have been investigated to model plant-herbivore interactions [1,2,
3,4,5,6,7,8]. These models are based on prey-predator system. The understanding of the relationships between
herbivores and plants are extremely important for land management. Fractional differential equations has been an active
field of research currently due to their applications in manyareas of life [9,10,11,12,13,14,15]. In the present paper, we
consider fractional order to model plant-herbivore interactions. The paper is organized in the following manner. Section
2 introduces a plant-herbivore model with fractional orderand discusses the boundeness of the solutions of the
plant-herbivore fractional order model. Sections 3 discuss the stability of the equilibrium points of the model. Section 4
simulates the dynamics of the system of plant-herbivore fractional order model using generalized predictor corrector
algorithm. Section 5 summarizes the results obtained in this paper.

2 Model Formulation

The plant-herbivore model can be written as follows [15]:

dx
dt = x(q− x)− β x2y

1+x2 ,

dy
dt =

β1x2y
1+x2 − γy,

(1)

whereα,β ,β1 andγ are real positive constants. Recently, mathematical models with fractional order are become suitable
than models with integer order as fractional order models allow more degrees of freedom and due to the existence of
memory effects, see [9,10]. The plant-herbivore interactions are described by the following system of nonlinear fractional
ordinary differential equations:

Dα
t x= x(q− x)− β x2y

1+x2 ,

Dα
t y= β1x2y

1+x2 − γy,
(2)

whereDα
t is the Caputo fractional derivative.
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Lemma 1.The solutions of the plant-herbivore model are uniformly bounded .

Let (x(t),y(t)) be the solution of the plant-herbivore fractional order model (2). Since

Dα
t x= x(q− x)− βx2y

1+ x2 (3)

≤ x(q− x),

then
x≤ q for t → ∞. (4)

Let

W = x+
β
β1

y, (5)

then

Dα
t W = Dα

t x+
β
β1

Dα
t y= x(q− x)− β γ

β1
y= x(q− x)+ γx− γ

(

x+
β
β1

y

)

. (6)

Now, the maximum value ofx(q− x) is q2

4 since 0≤ x≤ q, then

Dα
t W ≤ γq+

q2

4
− γW = L− γW (7)

whereL = γq+ q2

4 . By Lemma 9 [16] , we have

0≤W(x,y)≤W(x(0),y(0))Eα (−γtα)+LtαEα ,α+1 (−γtα) =W1, (8)

where Eα and Eα ,α+1 are the one-parameter and two-parameter Mittag-Leffler function respectively. Then the
solutions of the plant-herbivore fractional order model (2) with non negative initial conditions in the regionΩ , s.t

Ω = {(X,Y,Z) ∈W : 0≤W ≤W1} (9)

remain in the regionΩ . Thus, the regionΩ is positively invariant with respect to the of the plant-herbivore fractional
order model (2).�

In the next section, we will study the dynamical analysis of the fractional order plant-herbivore model (2).

3 Stability of Equilibrium Points and Hopf Bifurcation

Let α ∈ (0,1] and consider the following fractional order commensurate dynamical system:

Dα
t xi = fi (x1,x2) , i = 1,2. (10)

Let E = (x∗1,x
∗
2) be an equilibrium point for the fractional order system (10)and xi = x∗i + ηi , whereηi is a small

disturbance from the equilibrium point. This implies that

Dα
t ηi = Dα

t xi (11)

= fi (x
∗
1+η1,x

∗
2+η2)

≈ η1
∂ fi (E)

∂x1
+η2

∂ fi (E)
∂x2

.

The system (11) can be written as:
Dα

t η = Jη , (12)

whereη = (η1,η2)
T andJ is the variational matrix evaluated at the pointE = (x∗1,x

∗
2). Following Matignon’s theorems

[17], the fractional order linear system (12) is asymptotically stable if for all eigenvalues of the Jacobian matrixJ at the
fixed points, the condition|arg(λ )|> απ

2 is satisfied.
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Theorem 1.[18,19,20] Consider the following commensurate nonlinear fractional order system:

Dα
t x= g(x), x(0) = x0, α ∈ (0,1) . (13)

an equilibrium point of system (13) is locally asymptotically stable if all the eigenvalues of the Jacobian matrix satisfy
|arg(λ )|> απ

2 .

If Φ (x) = x2+a1x+a2, then the discriminantD(Φ) of a polynomialΦ is given by

D(Φ) =−

∣

∣

∣

∣

∣

∣

1 a1 a2
2 a1 0
0 2 a1

∣

∣

∣

∣

∣

∣

= a2
1−4a2. (14)

The generalized Routh-Hurwitz stability conditions are given by the following proposition[18,19,20].
Proposition

One assumes thatE exists inR2
+.

1. If D(Φ)≥ 0, a1 > 0 anda2 > 0, then the equilibrium point is locally asymptotically stable.

2. If D(Φ)< 0 and

∣

∣

∣

∣

tan−1

(√
4a2−a2

1
a1

)∣

∣

∣

∣

>
απ
2 , α ∈ [0,1) then the equilibrium point is locally asymptotically stable.

In the following we evaluate the equilibrium points. Let

Dα
t x= 0, Dα

t y= 0.

Then we obtain:
1. The first trivial equilibrium point isE0 = (0,0) .The pointE0 always exists.
The Jacobian matrixJ0 for the plant-herbivore fractional order model (2) evaluated at the equilibrium pointE0 is:

J0 =

(

q 0
0 −γ

)

.

Theorem 2.The trivial equilibrium point E0 of system (2) is a saddle point.

The trivial equilibrium pointE0 is locally asymptotically stable if all the eigenvaluesλ0i , i = 1,2 of J0 satisfy
Matignon’s conditions. The eigenvalues corresponding to the equilibriumE0 areλ01= q andλ02 =−γ.

Then we haveλ01 > 0 andλ02 < 0 . It follows that the node equilibrium point of system (2) is a saddle point, non-
empty stable manifolds and an unstable manifold.�

2. The second free herbivore fixed point isE1 = (x1,y1) = (q,0) when the herbivore is absent in the plant, in this case
(y= 0), therefore the plant is fully susceptible. The pointE1 always exists.

Theorem 3.For the fractional order plant-herbivore model (2), the basic reproduction number is

R0 =
β1q2

γ (1+q2)
.

Rewrite the equations by which classes of the herbivore population y first and then the plant populationx secondly, we
have

Dα
t y =

β1x2y
1+ x2 − γy, (15)

Dα
t x = x(q− x)− βx2y

1+ x2 .

one can write the system (14) in the form

dαX
dtα

= f (X)− v(X),

where

f (X) =

[

f1
f2

]

=

[

β1x2y
1+x2

−β x2y
1+x2

]

, v(X) =

[

v1
v2

]

=

[

γy
−x(q− x)

]

.
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Next, we define the matricesF(X) andV(x), such that

F(X) =

[ ∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

]

,V(X) =

[

∂v1
∂x

∂v1
∂y

∂v2
∂x

∂v2
∂y

]

,

then

F(X) =







2β1xy

(1+x2)
2

β1x2

1+x2

−2β xy

(1+x2)
2

−β x2

1+x2






,V(X) =

[

0 γ
−q+2x 0

]

,

at the free herbivore pointE1 = (q,0), we have

F(X) =





0 β1q2

1+q2

0 −β q2

1+q2



 , V(X) =

[

0 γ
q 0

]

.

Using the equation
∣

∣F ·V−1−λ I
∣

∣= 0, one obtain

∣

∣

∣

∣

∣

∣

β1q2

γ(1+q2)
−λ 0

−β q2

γ(1+q2)
−λ

∣

∣

∣

∣

∣

∣

= 0,

thenλ1 =
β1q2

γ(1+q2)
, λ2 = 0.

Therefore, the spectral radius isρ
(

F ·V−1
)

= max(λi) , i = 1,2. ThenR0 =
β1q2

γ(1+q2)
. �

3. By (2), The third point is a positive equilibrium pointE2 = (x2,y∗) =

(

√

γ
β1−γ ,

(q−x2
2)(1+x2

2)
β x2

)

.

Remark 1.
1) The free plant whose population density is denoted byx (x= 0 andy=+ve), does not exist, because herbivore

depends on the existence of the plant, so ify= 0 then it should be that,x= 0 is the free equilibrium pointE0 again.
2) E2 must be have non negative component, then we have the conditionβ1 > γ andx2 <

√
q for E2.

The variational matrixJ1 for the plant-herbivore fractional order system given in (2) evaluated at the free herbivore
equilibrium pointE1 is given by:

J1 =

[

−q β q2

1+q2

0 γ (R0−1)

]

.

Theorem 4.The free herbivore equilibrium point E1 is a saddle unstable point.

The Jacobian matrixJ1 has the following eigenvaluesλ11 = −q andλ12 = γ (R0−1)> 0. Hence, the free herbivore
equilibrium pointE1 is not locally asymptotically stable.� In the next section, we will discuss the asymptotic stability of
the positive equilibrium pointE2 of the plant herbivore fractional order model (2). The Jacobian matrixJ2 of the positive
equilibrium pointE2 = (x2,y∗) is given as:

J2 =







q−2x2− 2β x2y2

(1+x2
2)

2
−β x2
1+x2

2
2β1x2y2

(1+x2
2)

2 0






.

The characteristic equation ofJ2 is
λ 2−Tr(J2)λ +det(J2) = 0, (16)

where

Tr(J2) = q−2x2−
2βx2y2
(

1+ x2
2

)2 and det(J2) =
2β β1x2

2y2
(

1+ x2
2

)3 > 0.

The characteristic equation (16) have the rootsλ21,λ22=
1
2

[

Tr(J2)±
√

Tr2(J2)−4det(J2)

]

.
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Theorem 5.The equilibrium point E2 of the plant herbivore fractional order system (2) is locally asymptotically stable if
the following conditions are satisfied:

i) q<
2x2γ

2γ−β1
,

ii) 2γ > β1 and
iii ) Tr(J2)< 2

√

det(J2)cos(απ
2 ).

It is clear that Tr(J2)< 0 if and only if q<
2x2γ

2γ−β1
implies that 2γ > β1, then

∣

∣arg
(

λ2 j
)∣

∣>
απ
2 , j = 1,2, if and only if

the three conditions hold.�

Theorem 6.For the plant herbivore fractional order model (2), the following statements can be obtained.
(a) If q≤ 2x2γ

2γ−β1
, then for0< α < 1, the equilibrium point E2 is locally asymptotically stable,

(b) 2γ > β1,

(c) If 0 < Tr(J2) < 2
√

det(J2), then for anyα ∈ (0,α∗) , the equilibrium point E2 is locally asymptotically stable,

whereα∗ = 2
π

∣

∣

∣

∣

cos−1

(

Tr(J2)

2
√

det(J2)

)∣

∣

∣

∣

and

(d) If Tr(J2)≥ 2
√

det(J2), the equilibrium E2 is unstable for anyα ∈ (0,1).

The conclusions (a), (b) and (d) are obvious. For the statement (c), due to 0< Tr(J2)< 2
√

det(J2), the equation (16)

has two complex rootsλ21,λ22, and their real part isTr(J2)
2 > 0. Then

∣

∣arg(λ2 j)
∣

∣ = cos−1

(

Tr(J2)

2
√

det(J2)

)

, j = 1,2. Besides,

according to the condition cos−1

(

Tr(J2)

2
√

det(J2)

)

= α∗π
2 , α ∈ (0,α∗) if and only if

∣

∣arg(λ2 j)
∣

∣>
απ
2 , j = 1,2 [18,19,20,2,4,

21], it is concluded that Theorem 3.6 is true.�
According to the statement of Theorem 4 and Theorem 5, it can be concluded that the positive equilibrium is locally

asymptotically stable if and only ifα ∈ (0,α∗) . At α = α∗ the Hopf bifurcation is expected to take place. As increases
above the critical valueα∗ the positive equilibrium is unstable and a limit cycle is expected to appear in the proximity of
E2 due to the Hopf bifurcation phenomenon.

4 Numerical Methods and Simulations

We applying the generalized predictor corrector algorithmto find the numerical solution of the plant herbivore fractional-
order model (2). By settingh= T

M , tm = mh, m= 0,1,2, , ...,M ∈ Z+, then Eq. (2) can be discretized as follows:

xm+1 = x0+
hα

Γ (α +2)

[

xp
m+1(q− xp

m+1)−
β
(

xp
m+1

)2
yp

m+1

1+
(

xp
m+1

)2

]

+
hα

Γ (α +2)

m

∑
j=1

a j ,m+1

[

x j(q− x j)−
βx2

j y j

1+ x2
j

]

,

ym+1 = y0+
hα

Γ (α +2)

[

β1
(

xp
m+1

)2
yp

m+1

1+
(

xp
m+1

)2 − γyp
m+1

]

+
hα

Γ (α +2)

m

∑
j=1

a j ,m+1

[

β1x2
j y j

1+ x2
j

− γy j

]

,

where

xp
m+1 = x0+

1
Γ (α)

m

∑
j=0

b j ,m+1

[

x j(q− x j)−
βx2

j y j

1+ x2
j

]

,

yp
m+1 = y0+

1
Γ (α)

m

∑
j=0

b j ,m+1

[

β1x2
j y j

1+ x2
j

− γy j

]

,

a j ,m+1 =







mα−1− (m−α)(m+1) , j = 0,
(m− j −2)α+1+(m− j)α+1−2(m− j +1)α+1 1≤ j ≤ m,

1 j = m+1,

b j ,m+1 =
hα

α
[

(m− j +1)α − (m− j)α]
, 0≤ j ≤ m.
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Numerical results of the fractional order plant-herbivoremodel (2) are presented in Figs. 1-4, it is clear that the
numerical solutions of the fractional order plant-herbivore model (2) depends on the fractional orderα. We use some
parameters likeq = 8, β = 1.25, β1 = 1.2, γ = 1 and(x0,y0) = (2.2,12).The approximate solutionsx(t) andy(t) by
the generalized predictor corrector algorithm are displayed in Figs. 1-4, with different values ofα. Where Tr(J2) =
1.606553371, det(J2) = 1.921310675 the values of the basic reproductive numberR0 = 1.181538462, the equilibrium
pointE2 =(x2,y2) = (2.236067977,12.37300207)andα∗ = 0.606482273.Whenα <α∗ the trajectory of fractional order
plant-herbivore system (2) converges to the equilibriumE2 as shown in figure 1 forα = 0.59 and figure 2 forα = 0.6.
Whenα > α∗ the trajectory of fractional order plant-herbivore system(2) converges to converges to an asymptotically
stable limit cycle as shown in figure 3 forα = 0.61 and figure 4 forα = 0.62.

Fig.1. The phase portraits of plant herbivore model (2) converges to the equilibriumE2 for α = 0.59.
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Fig.2. The phase portraits of plant herbivore model (2) converges to the equilibriumE2 for α = 0.6.

Fig.3. The trajectory of plant herbivore model (2) converges to an asymptotically stable limit cycle forα = 0.61.
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Fig.4. Whenα = 0.62 the trajectory of system (2) converges to an asymptotically stable limit cycle.

5 Conclusions

In this paper, We have proposed a fractional order model for the interaction between plant and herbivore. We analyze the
fractional order model with regard to stability of the equilibrium points. We have established the condition for uniform
boundeness of the model. We have also given a numerical results using Adams-Bashforth-Moulton algorithm. The
theoretical and numerical results for the fractional dynamical system model presented in the paper show that the
plant-herbivore model may exhibit rich dynamical behavior.
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