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Abstract: It is shown how a physical function, namely the Wigner function, that in

principle may be measured, can be used to evaluate divergent series.
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1 Divergent series

The process of measuring the field wave function is usually realized through the recon-

struction of quasiprobability distribution functions (QDF) [1–5]. One of the most promi-

nent QDF is the Wigner function [6]. They allow us, among other things, the visualization

of nonclassical states of light (see for instance [7]). Besides their applications in quantum

mechanics, they may also be used in classical optics [8]

Here we will give a physical way to evaluate a class of divergent series by using the

Wigner function for the position operator (and its powers). Abel quoted on these kind of

series:

”Divergent series are on the whole devil’s work, and it is a shame that one dares to

found any proof on them. One can get out of them what one wants if one uses them, and it

is they which have made so much unhappiness and so many paradoxes” [9].

We can evaluate the alternating seriesS = 1 − 1 + 1− 1 + 1 + ... by considering the

alternating geometric series1 − x + x2 − x3 + x4 − .... provided|x| < 1, we know that

it converges to1/(1 + x). By allowing x to get close to1, the series will tend to a value

close to0.5. Therefore, we can say that the (divergent) sumS evaluates1/2 in the Abel

sense [9].
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Another way of defining convergence is by using Césaro’s sums. The sumS diverges

not because the partial sums grow uncontrollably, but rather because the partial sums oscil-

late. If we could find a way of averaging the sums in order to smooth them out, maybe

this series will converge. Using Abel and Césaro’s limits it has been shown also that

1 − 2 + 3 − 4 + 5 + ... has discrete sum−1/4 [10], values that agree with evaluations

of the Riemann zeta function [10].

In this contribution we propose a new method to evaluate divergent series by using a

physical function, namely the Wigner function [6], which may be written in the form, [11]

W (α) =
1
π

Tr{(−1)n̂D†(α)ρD(α)} (1.1)

whereρ is the system’s density matrix, the number operatorn̂ = a†a with a the annihilation

operator andD(α) = exp(αa† − α∗a) the Glauber displacement operator, whereα =
(q + ip)/

√
2. Another common form for the Wigner function is

WA(α) =
1
2π

∫
dueiup〈q + u/2|A|q − u/2〉 (1.2)

where we define it for an arbitrary operatorA. If we consider a function of the position

operator, we find

Wf(q̂)(α) =
1
2π

∫
dueiupf(q − u/2)δ(u) =

f(q)
2π

. (1.3)

It is worth to note that the Wigner function is in general a physical function and that has

been measured in experiments. In particular by using the expansion in terms of Laguerre

polynomials for Hamiltonians in the interaction of light and trapped ions [12], Leibfriedet

al. measured the Wigner function for the first excited state of the vibrational motion of an

ion [13].

For an arbitrary operator, for instance, position to an arbitrary powerq̂k the Wigner

function may also be given in a series representation [14]

qk

2π
=

1
π

∞∑
n=0

(−1)n〈n|D†(α)q̂kD(α)|n〉

=
1
π

∞∑
n=0

(−1)n〈n|(q̂ + q)k|n〉. (1.4)

where|n〉 is a number state. Note that equation (1.4) has already the alternating form of

the series considered above.

By doingk = 0, we obtain

1
2

=
∞∑

n=0

(−1)n, (1.5)
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doingk = 2 gives [15]

q2

2
=

∞∑
n=0

(−1)n(q2 + 〈n|q̂2|n〉), (1.6)

which by using that〈n|q̂2|n〉 = n + 1/2 allows us to evaluate the sum

∞∑
n=0

(−1)nn = −1
4
, (1.7)

where we have used (1.5) to evaluate (1.7). Eq. (1.6) then shows that there is a recursion

relation between the higher order sums in terms of the lower order ones. We can find a

general expression that will have this recursion in it. In order to do this we writeq̂ in terms

of annihilation and creation operators,

q̂ =
a + a†√

2
, a|n〉 =

√
n|n− 1〉,

a†|n〉 =
√

n + 1|n + 1〉, (1.8)

and insert it in (1.4), this gives

qk

2
=

∞∑
n=0

(−1)n
k∑

s=0

(
k

s

)
qk−s

2s/2
〈n|(a + a†)s|n〉. (1.9)

by equating the coefficients of powers ofq at right and left of the equal sign, we finally

obtain (s > 0)

0 =
∞∑

n=0

(−1)n〈n|(a + a†)2s|n〉. (1.10)

This equation is the main result of the manuscript, as it will allow the evaluation of the

divergent series considered earlier.

Because of the average with the numbers states, we can remove all terms that do not

contain an equal number ofa†’s anda’s, as they are the only terms that will contribute to

the sum of diagonal matrix elements. Therefore by considering those elements we may

neglect all other terms of the sum. We have [16]

(
a† + a

)m ⇒





(
m

m/2

)
: (a†a)m/2 :W , m even

0 m odd

(1.11)

where: (a†a)s :W denotes the Weyl (symmetric) ordering of the operatorn̂s. It may be

transformed into normal ordering using [16]

: (a†a)m :W =
m∑

l=0

l!
2l

(
m

l

)2

a†m−lam−l. (1.12)
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Inserting (1.12) into (1.10) and making use of the expression

a†mam|n〉 =
n!

(n−m)!
|n〉, (1.13)

we obtain
∞∑

n=0

s∑

l=0

(−1)n

2l

(
s

l

)(
n

s− l

)
= 0. (1.14)

For s = 1 we obtain (1.5) and fors = 2 we obtain (1.7), while fors > 2 we obtain the

sums ∞∑
n=0

(−1)nn(s−1) (1.15)

in terms of thelower sums, i.e. as a recursion formula.

In conclusion, we have shown a physical form, to evaluate some divergent sums, by

means of a function that in principle may be measured, namely, the Wigner function.
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