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Abstract: In this paper we generalize the BurrXIll-poisson distribatand we refer to this generalization as the generalizeX®rr

poisson distribution (GBXIIP). Several properties an@iehces of the generalize BurrXll-poisson distribution@lrtained and studied
including the shapes properties of its probability denaitg hazard rate functions. Moreover the existence of its uBder some

certain conditions are analyzed. Two real data applicatare used to demonstrate the performance and effectivehtss proposed

distribution.
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1 Introduction

A new family of distribution known as exponential geomet(EEG) was proposed byl], by compounding the
exponential and geometric distribution2] [ introduced the complementary exponential-geometric GCEas a
complementry to the exponential-gometric(EG) distribatiln the same way3] introduced a new class of distribution
known as the Exponential Poisson distribution (EP) andmi&c@4] proposed the Generalize exponencial poisson (GEP)
distribution as the generalization of (EP) distributiory, é&xponentiating the cdf of the Exponential Poisson (EP)
distribution. p] proposed a new family of distribution called the BurrXitwwer series (BXIIPS), this distribution is
obtained using the procedure follows by tHg, [the BurrXll-power series distribution includes the BXilpoisson
(BXIIP) distribution as its sub model. The cumulative distition function of the BXIIP distribution with parameters
a>0,B>0andA > 0is defined as

C1—expA((1+x%)"P-1))
- (1—exp—A)) ’

Following the same approach, in this paper we introducesiafoer parameter lifetime model named the generalized
BurrXll-poisson (GBXIIP) distribution by exponentiatitige cdf (in Eq. (1)) of BXIIP distribution. In section2 we give

the density, hazard rate function and the quantile funaifdthe GBXIIP distribution. Moreover we derive the moments,
orderstatistics, moment of orderstatistics and the Renybpy. In section 3 Estimation by maximum likelihood and
inferences are analyzed. Sectidmprovides applications to two real data sets and sechi@oncludes the paper.

H (x)

x> 0. 2)

2 The GBXIIP distribution

A random variableX has the generalize BurrXll-poisson distribution with paedera, a, 8 andA if its cdf is

FX) = <1—exrw<1+x“>ﬁ—1>>>f x>0, @

(1—exp-A))
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Notice that whera = 1 the GBXIIP be come BXIIP distribution. The pdf, hazard ratection (hrf) and the survival
function of the GBXIIP distribution are given respectivdly

aaBAXIH(1—expA ((1+x9)"P —1)))2 lexpA (1 +x9)F —1)

fxa.ap,4)= (1= exp(—A))3(1+ x@) (B 1) ’ @)
(1— exp(—A))2— (1— exp(A ((1+x%)—F — 1))

s(x) = 1_exp M) ’ “)

h(x) = aaBAXT—1(14x0)~(B+D) (1—exp(A ((14+x%) P —1)))2Texp(A (14+x?) B 1)) 5

= (1—exp(—2))— (1—exp(A (1x%)P—1)))a ' ®)

The quantile functiony(u) of the generalize BurrXll-poisson (GBXIIP) distributionivgn by Eq. (6), is
straightforward to be computed by inverting EQ){and it can be used to generate random data.

(IJ(U) _ (<|Og(1— ua (1)\_ eX[X—)\))) + 1) F _ 1) ’ ue (O, 1) (6)

Theorem 2.1 The limiting distribution of the GBXIIP(a, a, 8, A ) given by Eq. ( 2) when

a
A —0tandaeNora= %, k(even) € N, is, lim, _o+ F(X) = (1— m) , 1.e. It convergesto exponentiated BurrXI|
distribution with parameter a, a and 3.

Theorem 2.2 The pdf of the generalize BurrXIl-poisson (GBXIIP) given by Eq. ( 3) is monotone decreasing function for
O<a<landO<a<1, andunimodal for o >1anda> 1.

Proof:

log(f(x) = log ((1—23—53))"") + (@ —1)logx— (B+1)log(1+x7)

+(a—1)log(1—expA (1+x) P —1))+ (A ((1+x0) P -1))
and

gy — O 1 a(B+1)x 1 (a—1)aBr x®lexpA((1+x%)P—-1)) apAxd?
109100 = 5 " T Lo (@) P - 1) AP )T

When 0< a < 1and 0O< a< 1, (logf(x))’ < 0, this impliesf (x) is monotone decreasing function. Suppose that 1
anda > 1, thenf(x) has exactly one root sag. Then, forx < x,, f(x) > 0 and forx > Xo, f(X) < 0 so, f(x) gives a
unimodal shape with mode valve= x.

Theorem 2.3 If a < 1 and a < 1, the hrf of the generalize BurrXIl-poisson (GBXIIP) given by Eq. ( 5) is monotone
decreasing function.

Proof:
Following the theorem off], we let

X_—f’(x)_ (@—1) aB+1)x*1 (a-1)afAxdTexpA((1+x9)P-1)) aprAxi—?
nix) = fx) X * (1+x9)  (1—expA((1+x9)"F —1))) (1+x0)B+L " (14xa)B+1

Wheref’(x) is the first derivative of (x) in Eq. (3). Then,n’(x) is given by
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(a-1 , a(@a-DE+x*2  a*(p+1)x*D

n'(x) = N (1+xa) (11 x)2
(a—1)(a—1)aBAx*2z(x)  (a—1)a?B2A2x2@Dz(x)
C (1)) (14X (1—2(x) (L xa)2B+1)

(a—1)a?B2A2x2@-D (z(x))2  (a—1)a2BAx¥a-D zx)
(1—2(x))2(1+xa)2(B+1) (1—2z(x)) (1L +x9)2B+2)
(a—1)apAxa—2  a?B(B+1)x-D
(14xa)B+l  (14xa)B+2

Wherez(x) = exp(A ((1+x9)"F — 1)), thus, fora < 1 anda < 1, n’(x) < 0, hence the proof. We can also see from
Figurel that Eq. (5) can take other shapes
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Fig. 1: plots of Probability density (f(x)) and hazard rate (h()Qhétions of the generalize BurrXll-poisson distributiar fifferent
values of parameter.
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2.1 Useful expansions

We demonstrate that the Pdf of the generalize BurrXIl-moististribution (GBXIIP) can be written as a infinite mixture
of the BXIIP or BXII densities. Using the following seriegaresentation

al_ < (DM@ |
(1—U) l—émuj (7)

where|u| < 1, a> 0 real and non-intiger, then, we have an infinite mixture as

)= S 9j00caB.A(+1), ®)
X

where
(~1)ial (1—expg—A(j+1))
(1-exp(=A))2(j+1r(@a—j)j!
andg(x;a,B,A(j+ 1)) is the BurrXll-poisson probability density function wittammeter, 8 andA (j + 1). Also by

applying the exponential expansion in E@) above and some algebraic manipulation the GBXIIP densitgtfan can
be written as an infinite double mixture of BXt,3(i + 1)) as

¢ =

=S S 6 0", Bli+ 1)), ©)
2,290
where

(—1)7al A" (j + 1) (exp(~A (j +1)))
(I1—exp—A))2(i+1)r@—j)ji

andg*(x;a,B(i + 1)) is the pdf of the BurrXIl distribution with parametessand (i + 1).

o' =

2.2 Moments

Moments of a distribution are extremely essential in vesistatistical analysis, particularly in practical appiicas. Most

of the features and characteristics of a probability model lzse analyzed through its skewness, kurtusis, tendency and
dispertion. The following lemma provide th# central moment of the generalize BurrXlI-poisson (GBXItigtribution
which is extremely useful in computing some other propsmiethe proposed distribution.

Lemma 2.4 if X has GBXIIP(a,a, 3,A) and for a > 0 real and non-intigers, the rt" central moment of X, say " is given
as

alp > 2 (=DIA*(j+1) exp(—=A(j+1)) . rr
(T exp(—A))? 242 NCENN BBI+D-55

E(XT) = +1).

E(X') = /wa'f(x)dx

Letu= (14x9)~B then, fora > 0 real and non-integers we can apply the series represemgitien by Eq. (7),
therefore,

u #exp()\ (i +21)u)du,

Ql=

o ar@a 2 (=1lexp-A(j+1) 1
BX) = (1_exp(_A))aJZO ra_J /o(l_“[i)
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by apllying the exponential expansion for gXgj + 1)u) and lettingu = v#, we have

W a@BA S DN exp-AG+D) Y st
B0 = et R 2,2 Fa-pi /0(1_") Ve iy

Thus,

alp 2 (=) A+ 1) exp(—A(j+
T e 1 2, e

E(X") = ))B(B(i+1)—%,%+1). (10)

The moment generating function (mgf) of GBXIIP distributis computed by (t) = E(€*) which can be express
as

Mx(t) = i%E(Xr). (11)
Putting Eq. (10) in Eq. (11) we have
222 Jtr)\'“( +1)exp—A(j+1)) . rr
My(t) = 1em:A ZZ;} i MNMD—?E+D. (12)

While the skewnesgy) and kurtosigys) of the GBXIIP distribution can be obtained by substitutirey E10) in the
followings below.

r= 3 ()0 reoo, (13)
and
= i(f)(—l)fu“E(xw. (14)

Where u and o are the mean and standard deviation of the GBXIIP distidioutFuthermore, the skewness and
kurtosis of the generalize BurrXlI-poisson (GBXIIP) dibtrtion can be observed using its quantile function. The Bgw
skewness (B) and Moores kurtosis (M) provides the measuasyosfimetry and the degree of peakedness of a distribution
with respect to one of its parameter respectively. The Bpwkewness and Moores kurtosis are defined, respectively by

W(3/4) + p(1/4) - 20(2/4)
B G e 13)
and
_ W(3/8)~w(1/8) + w(1/8) - (/8 a5)

W(6/8) —y(2/8)

Where(u) is a quantile fuction given by Eq.&). Figure 2 shows the plots of the Bowley skewness and Moores
kurtosis of generalize BurrXIl-poisson (GBXIIP) distrifin.
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Fig. 2: plots of the Bowley skewness (B) and Moores kurtosis (M) afegalize BurrXII-poisson distribution for different vas of
parametef3

2.3 Order statistics

Let Xg, X, -, Xy be a random sample obtained from GBXl#Pa, 3,A ) distribution with cdf and pdf given by Eqs2j
and (3), respectively. LeX;y, < Xon < -+ < X be the order statistics observed from this sample, therpdhef X,
thatisfj:n(x), j=1,2,---,ncan be computed by

n!

fin(x) = G=Din=j)

where F(x) and f(x) are given by Eqs2) and (3) respectively. By the binomial expansion for

fO) Fx)) (L= F ()", 17

(@) (1 e (o) )= 5

x (L—exp(—A))An-i-k
X (L—expA ((1+x9)"P —1)))

then, subtitute in Eq.17) above and after some algebraic manipulation, finally waiakihe following

. (—1)kn!
fin(x) = kZO M= 1-K (1K (1K

f(xa(j+k),a,B,A) (18)

wheref(x;a(j +k),a,8,A) is the pdf of the generalize BurrXll-poisson (GBXIIP) moaéth parametea(j + k), a, 3
andA. Thert™h ordinary moment of th¢!" order statistics of the GBXIIR, a, 8, A) distribution can be computed from

E(X,) = /0 X (X dx. (19)

where fj:n(X) is the pdf of order statistics of the generalize BurrXIl-ggnn (GBXIIP) distribution given by Eq.X8).
Following the same approach as ih@), thus,

e A 1Wagn AL (w4 1) T (a(j+k)) exp(—A (w+ 1))
E(Xin) = Z PPN - XA AR — D1 (0= KT (&) +K) - w) ik

B(B(H'l)—a —+1)
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2.4 Renyi entropy

An entropy of a random variablé can be defined as a measure of variation of uncertainty. Ihdamm variableX is
distributed according to generalize BurrXll-poisson (@BX distribution, then, the renyi entropy can be obtaimiro
IR(p) = ﬁlog [fs f(x)Pdx], wherep > 0 andp # 1, therefor, we start by computing

i _(aaBA P el expA (1 x) P - 1))PE DexpAp(1+x%)F 1)
/o f(X)de_<(1_qu_/\))> /o x0T dx.

Settingu = (14x%)~# and forp(a— 1) + 1 > 0 real and non-integers we can apply the series represemtatEq.
(7), then,

@) (aB)Pt 2 (~1)) T (p(a-1)) exp-A(p+ )
I e

1
x / (1—uf )@ )e-1) yap DD gy (o4 j)u) du.
0

Apllying the exponential expansion for e(p + j)u) and lettingu = v#, we have

[ 1P aBA)PaP*l ® 2 (<)) Al (p+])' T (pla—1) exp—A(p+ )
A—exp ) 2,2 F(pla—1)— )i jt

/1(1 V) &3 (0= B+ +(F+B)(o-D-1 gy,
0

[ toopax= (@A )Part 22 (=11 AT (p+) T (p(a—1) exp—A(p+]))
0 (1—exp(—A))® &H& Fp@@—1)— il !

<B(B(I+1)+ (5 +B)(p—1),(1-2)(p—1)+1).

Thus, the renyi entropy is

Imp):—log[g%m] PGB 1.(0- ) -1 +D)|

Where

(aBA)P a1 (~1)i A (p+) T (p(a—1))
(T—exi—A))*T (pla—1)— il J!

@jlp)=

3 Estimation and inference

LetX, i=12,---n., be a random sample of size n obtained from the generalizexBygoisson (GBXIIP) distribution,
let 8 = (a,a,B,A)" be the vetor of parameters of the generalize BurrXIl-pais&@BXI1P) distribution. Then we can
express the log-likelihood function for the vetor of paraens as

log¢(0) = nloga+ nloga + nlogfB + nlogA —anlog(1—exp(—A))
#(@=1)3 logx ~ (B+1) 3 log(1-+x¢)

+(a— 1)iilog(1— exp(A (1+x") P —1))) +A i((leri"’)‘B —-1).
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And the first partial derivative of log6), that is &%, 25, 95, g5 are computed as

% = g— nlog(1—exp(—A))+ zllog(l— expA (L+x7) 7P —1))), (20)
¢ n 2 x*logx D xTlogx;

%:E—I—ZJOQN B+1) 1+Xa _B 21 1+Xa B+1

"Iogx. exp(A ((1+x0)"F 1))

(@- 13)‘2\ (14+XxM)B+1 (1—expA (L+x*)"B—-1)))’ (21)
a n ay_y v 109(L+x7)
B = 3 i;bg(l"'xl )—A 2 (1+Xia)ﬁ
" log(1+X7) expA((1+x0)P—1))
TEDAY TP (e (1) P=1))) -
¢ n anexp—A) Q& ay—B
ﬁ_x_(l—Tp(—)\))+i;((l+)q) -1
N ((14x9) B — 1) exp(A((1+x) B —1)) (23)

SO T e (@) P 1))

The maximum likelihood estimate (MLEsé = (4,a,8,A)" of 8 = (a,a,B,A)T is obtained simultaneously by
solving Egs. (20), ( 21), ( 22) and (23) equated to zero. These nonlinear equations can be solvadrioally using
existing mathematical or statistical packages. For thenasgtic interval estimation and hypothesis tests of the fou
parameters, a, 3 andA, we need 4 4 Fisher information matrix denoted i§y(0)), under the usual condition that are
fulfilled for the parametera, a, B, andA in the interior of the parameter space but not on the bound&i asymptotic
distribution of \/n(8 — 0) is N4(0,171(8)), which is a Normal 4-variate with zero mean and variance covariah@d.
This condition is also applicable if0) is substitute by the information matrix evaluatedathat isJ(6). The Normal
4—variate distributionN4(0,J-%(8)) can be used to establish an approximate confidence intemdaregion for the
model parametea, a, 3, andA. The 4x 4 informtion matrix is given ad(8) = —[9¢/0698"], and the element aX(9)
are given in AppenditD4).

Theorem 3.1 Let g1(a;a,8,A,%) denote the function on the right of Eq. ( 20), where a, 8 and A are the exact values of
A((1+x0) B -1

the parameters, then, the equation g (a; a, 8, A, x) = O hasat least oneroot for log(1—e ) > g, ‘og1-¢ ((n+ )

Theorem 3.2 Let gz(ar;a, 3, A, %) denote the function on theright of Eq. ( 21) wherea, 3 and A are the exact value of the

parameters, then, the equation gx(a;a, 3,A,% ) = 0 can take one of the following forms.

(i) For min{X} >1anda=1.

(i) For max{Xi} < landa=1.

Theorem 3.3 Let g3(3;a,a,A,x%) be the function on the right of Eq. ( 22), where a, a and A are the exact values of

the parameters , then, the equation g>(83;a,a,A,x%) = 0, has at least one root for a # 1 and for a = 1, the root of

93(B;a,a,A,%) = Oliesintheinterval (n((1+A) S ;log(1+x%)) "L, n(3";log(1+x¥))~1).

Theorem 3.4 Let g4(A;a,a,,%) bethe function on the right of Eq. ( 23), wherea, a and 3 are the exact values of the
parameters, then, the equation g4(A;a, a, ,%) = 0, has at |least one root.

Proofs. for theorem3.1, 3.2 and 3.3 see Appendi1, D2 andD3 respectively. Theoren3.4 is similar to theorem3.3
fora+# 1.

4 Applications

In this, section, we fit the GBXIIP distribution to two distireal data set and we compare the performance with those of
the BXIIP, BXIIG by [5] and BurrXIl by [7] distributions. The Akaike information criteria (AIC) anBayesian
information criteria (BIC) are used to assess the effentigs of the models, the model with the smallest value of these
measures gives a better representation of the data set likaothiers. The histogram, empirical cdf and the fitted
distributions are plotted for each data set.
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First data set.

This data set represent the marks for the pace slow programainematics 2003, provided bg][ and recently studied
by [9]. the data set are: 29, 25, 50, 15, 13, 27, 15, 18,7, 7, 8, 19,85, 21,15, 86, 21, 15, 14, 39, 15, 14, 70, 44, 6, 23,
58, 19, 50, 23, 11, 6, 34, 18, 28, 34, 12, 37, 4, 60, 20, 23, 4018531. As you can see from Tallehe GBXIIP has
the AIC=409.9288 and BIC=408.6538, this show that GBXIIRHii$ data better then the other distributions. Also Figure
3 provide the plots of the histogram and empirical cdf of th&t filata with the estimated densities obtained using MLE
procedure.

Table1: MLEs, ¢(8), AIC and BIC for the first data
Models Estimated parameters 0(0) AIC BIC
GBXIIP(a,a,8,A) 4=39.0759 & =228287 —2009644 409.9288 408.6538
B =0.0607, A = 0.03404

BXIIP(a,B,A) a = 6.9462 B=00478 —2455362 4970724 4961161
A=14x10"
BXIIG(a,B,p) 0 =102248 B =0.0325 —2455352 49707 496114
p=10x10"*
BXII(a, B) & =9.994,3 = 0.0332 —2455353 495071 494433
8 _ 1 o |
o i -
- — GBXIIP — GBXIIP
g i - BXIIP © BXIIP
oS . -- BXIG =} < BXIG T
o | ~ BXII
S © _| ‘
~—~~ O ! i Y o
Ry i - 8
T8 4K <
o oy ©
3 4N ~
d ‘ \ o
S _ H ) o _
S T T T T | e T T T T
0 20 40 60 80 100 20 40 60 80
X X
0] (i)
Fig. 3: (i) Histogram (ii) Empirical cdf of the first data and the fit&BXIIP, BXIIP, BXIIG & BXII densities.
Second data set.

This data set is provided by (] and recently analyzed byL[]. It is the measured in GPa for the strength of single carbon
fibers and impregnated one thousand carbon fibers tows. kagle §ber of carbon was examined under the tension at
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gauge length of ten millimeters. 1.901, 2.132, 2.203, 2,2287, 2.350, 2.361, 2.396, 2.397,2.445, 2.454, 2. 4PAR].
2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.62469R2.8.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937,
2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.22353.2.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408,
3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.85Z138886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. The=gal
presented in Tabl2 shows that the smallest AIC and BIC belongs to the GBXIIPritistion. Therefore, GBXIIP fit the
data better than the other distributions. Also Figure 4 gethe plots of the histogram and empirical cdf of the firsada
with the estimated densities obtained by MLE method.

Table 2: MLEs, £(6), AIC and BIC for the second data.

Models Estimated parameters £(0) AIC BIC
GBXIIP(a,a,B,A) a=243327, dA: 1595948 589453 125.8906  125.088
B =0.03397 A =0.1397

BXIIP(a,B,A) &=17194 3=005294 1381271 282542 2816522
A =403x10"*
BXIIG(a,B,p) 0 = 226217 B =0.0402 —1381267 2822534 2816514
p=10x10"*
BXII(a, ) & =222933—=00408 1381267 2802534 2798521
0 S
d ] —
(o)
© o |
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Fig. 4: (i) Histogram (ii) Empirical cdf of the first data and the fdt&BXIIP, BXIIP, BXIIG & BXII densities.

5 Conclusion

We have introduce a new probability model called generafimerXIl-poisson (GBXIIP) distribution. The GBXIIP
distributions consist of the BXIIP distribution as its scase. We provide explicit mathematical formulas for e
moment, order statistics, moment of order statistics ardRényi entropy. The existence of its MLEs are investigated
under some certain conditions. Finally we fitted the gemeraurrXIl-poisson (GBXIIP) distribution to two real life
data set, in which the GBXIIP fit better than BXIIP, BXIIG an&B distributions as measured by AIC and BIC.
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Appendix
D1
limy 001 = o, we show that lig . g1 < 0.
liMma w01 = —nlog(1—e?)+ 31 log(1— e A (1) P-1) thus, limy, g1 < 0 only

(1- eff\(<1+x )P - b)

iflog(1—e*) >3y, log .thereforeg:(B;a,a,A,x) =0 has atleast one root, since itis a contineous
function and monotone which decreases from positive vethueegetlve values.

It is?:lzear that, limy _002(a;a,B,A,%) = o, we show that, ling . g2(0r;a,3,A,%) <O.
thus, limy e G2(a58,B,A,%) = 35 1109% — B35 1109% .
To show thag,(a;B,A,%) < 0 asa — o, we consider the following cases.
() fmin{X} >1,a=1,thengy(a;a,B,A,%) = —Byy.logx <O0.
(i) fmax{X} <1,a=1,thengz(a;a B,A,x) = 3 4l0gx < 0.
(iii) If max{X} > 1 and mi{X} < 1 then,
g2(0;8,B,A,%) =y 3 4109% — By . 1logx < 0. Thus,gz(a;a,B,A,x) < O for all the cases, if and only ¥ # 1 for

somei =1,2,---,n. Since,gx(a;a,B,A,%) is a continuous function which decreases monotonicalipfpositive values
to negative values, henagy(a;a, 3,A,%) = 0 has at least one root.

D3:

Fora=1,letws=—ASD, 'Og ”)ﬂ

, Clearlyws is strictly decreasing iy,

limg _ows = —A zizllog(1+xi ), thus,

gs(B;a,a,A,%) > 5 — 3L 1Iog(1+x-°’)+limﬁ oWz =g — (A +1) 3L, log(1+X7),
then gg(B aa, A X|) > OWhenB < —)W

And

Iimp ﬁmW3=0,

gs(B;a,a,A.%) < g —3L lIog(1+x-‘)’)+lim,3 SwWs =g — ¥y log(1+X7),
thus,gs(B;a,a,A,%) < 0whenf > W

Hencegs(B;a,a,A,x) = 0 has at least one root in the interval

( n n )
(1+A) 31 log(1+xT) * ST, log(1+xT)

Fora#1

limg _,0g3 = . We show that, lirg _,,, 93 < 0.

limg 403 = — 3 1log(1+x") < O, thusgs(B;a,a,A,x) = 0, has at least one root, singg(B;a,a,A,x) is
contineous function and monotone which decreases frontiysd negetive values.

D4.

The elements al(6) are given by

0% n N X7 (logx;)? L xlogx
Y TN
X (logx)?z ;X" (l0gx)*2
+la- 1)BA21(1+x")ﬁ+1(1 z) e 1)B+1BA21 (1+x)P+2(1-2)
252 X7 (logxi)*z 2)2 X' (logx) 7
~(a-Lp% 21(1+x°’) (B+l>(1—25)_( Ve Z1(1+>9> APH(1-2)?
Xa |ngI Xa (Iogx.)

03 e ST
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920 n (log( 1+XI 2o (log(1+x"))?z
R SLRLI Y e e B Y e

(log(1+X"))? zz - _(log(L X)) 2
_(a_l)AZZ(H& )26 (1~ 2z) —(a—1))\2|; (1+x1)% (1-7)?

(log( 1+X1
A
- Zl (14xT)B
9%  n anexp—A) N (1+x0)7P-1)2z

- R Ted e YT 1w
N ((L+x9) B _1)2%
_(a_l)izi(( +)((11)_Z‘-)2 ) 2‘2
9%t n
F Fiar=:

0% 2 x7(logx)z
dada =R Zl (14+xM)B+1(1—z)

0% Dy logx) X (logxi)z
z?aﬁﬁ__i; (1+xi") +@ _1)\21 1+x°’ VBHL(1—z)
L X7 (logx) (log(1+ X)) z
SR T e

2)2-2

L X (logx) (log(L+x)
eIy -

0°( N x%(logx)z
daor BZ (1+x) )BL(1—37)
0 x{ (logx) (1+X) P -1)z
HEEURA Y T e

" %@ (logx;) ((1+x3)~P 1);2 X' (logx)
+(@-1BA ,Zl (14 xT)B+1(1—7)2 le 14 x7)B+1

o2 & (log(1+x")z & (log(1+x"))
apar ~ @ 1)21(1+x")( z) i; (1+x7)P

(log(1+x%) (L+x) P -1) 3
@ “Z G %)P(1-2)

(log(1+xM)) (L+x*)F-1)Z
PR e T

0%, < (log(1+x"))z
opoa )\i; (1+x")F (1-2)
0%  nexp—A) N (14X P -1)z
sza__(l—exp(—)\))_i; (1-2z)
Wherez = exp(A ((1+x%)7F —1)).
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