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In mathematics and statistics there exist many divergences. One of them, which has
a special appeal since it originates from Shannon’s entropy (a well known index of
diversity) and its concavity property, densen’s differencas it was called by Burbea

and Rao [9]. Continuing our research on the properties and the use of divergence and
information measures in the actuarial field, in the present paper, we investigate the
properties of the Jensen difference in the case of non-probability vectors. This appears
in actuarial graduation. Jensen’s difference without probability vectors is an appropriate
divergence if the vectors have equal element totals. We also investigate the use of
Jensen’s difference in the problem of determining a client’s disability distribution [6].

Keywords: Jensen difference, Jensen-Shannon divergence, non-probability vectors,
divergence measures, limiting properties, graduation, lagrangian duality, disability dis-
tribution.

1 Introduction

The bibliography provides a lot of measures of information that have been proposed
and studied in the literature (see for example [21], [29]). These are mainly categorized in
two groups, namelgntropy type measuresidmeasures of divergence

A useful notion in Information Theory iShannon’s entropgiven by

H(X) = = Y pla) lnpla) or HCX) =~ [ fo)n f(e) da

depending on whether the random varialdlés discrete or continuous, with probability
distributionp(z) or f(x), respectively. In the latter casH,(X) is also calledlifferential
entropy This measure quantifies the expected uncertainty related with the result of an
experiment, which means that it provides information for the predictability of the outcome
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of a random variableX. The larger the entropy the less concentrated the distributidh of
and thus an observation &f provides a little information.

A bivariate functionD( f, g) of two functions or vectorg, ¢ is a measure of divergence
if D(f,g) > 0 with equality if and only iff = ¢ (c.f. [1]). It expresses the "distance”
between the two functions or vectors. The main representative of this group of measures
of information is the Kullback-Leibler or relative entropy. Other well known members
of the group are the Cressie-Read power divergence [29] and the more general Csiszar
divergence or - divergence [11], which for finite probability vectopg = (p7, ..., px)T
andq* = (q7,...,q:)" is defined by

n )
I°pra") =) a'¢ (i}) :
=1 g

Function ¢ is convex in[0,00) such that0¢(0/0) = 0, lim,—ep(u) = ¢(0) and
0p(u/0) = udoo, Wherepo, = limy—ool[p(u)/ul, u > 0, ¢(1) = 0 andp(u) strictly
convex atu = 1. Special choices of lead to known measures of divergnence including
the Cressie-Read power divergence. In probability and statistics these divergencies are al-
most exclusively used with probability distributions. As we shall see below there are cases
where non-probability distributions are involved. A good reference book on measures of
divergence is that of Pardo [27]. Notation withwill indicate a probability vector, while
withoutx a non-probability vector.

A measure of divergence with a special appeal since it originates from Shannon’s en-
tropy and its concavity property idensen’s differencas it was called by Burbea and
Rao [9]. Itis also known amformation radiug34]. The Jensen difference between prob-
ability vectors is given by

Jp*,q) = H(p +4q9) - L[HP")+H),

whereH (p*) = — ), p; Inpy is the Shannon entropy between the finite probability vec-
torsp* andq*.

The aim of the present paper is on one hand to study the basic properties of statistical
information theory for Jensen’s difference with and without probability vectors and on
the other to explore their use in actuarial science. It is a sequel of a recent paper by the
authors [32] where similar problems have been studied with the Kullback-Leibler (KL)
and the Cressie-Read (CR) power divergences. Special attention is paid to the Lagrangian
duality for the Jensen difference in connection with the graduation problem.

In Section 2 of the paper we present two actuarial problems involving divergences.
The first one is the determination of a client’s disability distribution and the second is the
graduation of mortality rates. Both of them have been presented and solved in the seminal
paper of Brockett [6] via the Kullback-Leibler divergence. In this paper the emphasis is
on the Jensen difference which we study in detail in Section 3. A special feature of our
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approach is the use of non-probability vectors which appear in the graduation problem
but may appear in other situations as well. In Section 4 we give a numerical example
concerning the two problems while in Section 5 we give concluding results.

2 Actuarial problems

Information theory is related to actuarial science through the use of information mea-
sures for the treatment and solution of actuarial problems. In general terms we can cat-
egorize the use of information theory as follows: through entropy, through the Kullback-
Leibler divergence or relative entropy and through other measures.

A well known method of estimating probability models is the maximum entropy prin-
ciple (MEP). In this method, starting with some moments, which provide the only avail-
able information for the model, the model which maximizes the entropy is selected. This
method is widely used in several fields such as economics, accounting, biology, medicine,
ecology etc. [15]. Use of MEP in actuarial science can be found, among others, in ref-
erences [3], [8], [12], [15], [20] and [24] dealing with topics such as loss distributions,
credit risk, insurance problems, non-life insurance pricing, risk management, portfolio op-
timization, etc. The Kullback-Leibler directed divergence was first introduced in actuar-
ial problems as an information theoretic method for actuarial graduation in [7] and [39].
Brockett [6] gives a very good description of the use of information theory in actuarial sci-
ence. Other uses of the Kullback-Leibler directed divergence in the actuarial field can be
found in [25] and [38].

Two actuarial problems that can be solved via information theoretic methods are the
determination of a client’s disability distribution and the graduation of mortality rates [6].
The latter appears to be more interesting since it involves non-probability vectors.

2.1 Determination of a client’s disability distribution

Most insurance companies adopt a reference or standard distribution for losses. How-
ever this distribution might not be immediately applicable to a particular client’s situation.
So itis more common to make adjustments in order to reflect the known characteristics of
the client. Particularly, for the determination of the distribution of the duration of a disabil-
ity for a client with expected duration different from that of the standard table, which is
the less distinguishable from the distribution of the table, we can minimize any divergence
measure

n n
D(p*,q*) subjectto > pf =1 and > x;p} = p,
=1 =1
wherep* = (pf,...,p5)T andq* = (qf, ..., q:)". Theg; is the known probability of the
disability having a duration of; days, obtained from a reference tat¥e;._, p; = 1, p is
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the unknown probability of a duration; days to be developed for the particular client and
x1,...,T, aren discrete times of interest given in the standard table. The first constraint
assures that the's form a probability distribution.

Brockett [6] describes the minimization of the Kullback - Leibler divergence subject to
the two above mentioned constraints. We note that Brockett solves the above minimization
problem via its unconstrained dual convex programming problem.

2.2 Graduation through divergences

A common matter for an actuary is the description of the actual but unknown mortality
pattern of a population. In order to achieve this the actuary calculates from raw data crude
mortality rates, death probabilities or forces of mortality. Since these entities form an
irregular series, the actuary revises the initial estimates with the aim of producing smoother
estimates, with a procedure callgthduation There are several methods of graduation
classified into parametric curve fitting and non-parametric smoothing methods. A very
good reference book for graduation is that of London [23].

Brockett and Zhang [7] were the first to propose the use of information theoretic ideas
in graduation. Zhang and Brockett [39] tried to construct a smooth serieammfiual death
probabilities{v, },z = 1,2, ..., nwhich s as close as possible to the observed séiigs
and in addition they assumed that the true but unknown underlying mortality pattern is (i)
smooth, (ii) increasing with age, i.e. monotone, (iii) more steeply increasing in higher
ages, i.e. convex. They also assumed that (iv) the total number of deaths in the graduated
data equals the total number of deaths in the observed data, and (v) the total age of death in
the graduated data equals the total age of death in the observed data. By total age of death
we mean the sum of the product of the number of deaths at every age by the corresponding
age. The last two constraints imply that the average age of death is required to be the same
for the observed and graduated mortality data. For the mathematical description of the
constraints the interested reader is refered to [32].

In order to obtain the graduated values, Brockett in [6] minimized the Kullback-Leibler
divergence between the crude death probabilities (u,...,u,)? and the new death
probabilitiesv = (vy,...,v,)7,

v,
IKL (v, u) = valnu—'”,

x
x

subject to the constraints (i) - (v).

Itis easily seen that the annual mortality rates (death probabilitieaflv are not prob-
ability vectors sincé_!_; u, and>_""_, v, may be larger or smaller than one. To solve
this problem, Sachlas and Papaioannou in [32] investigated the properties of the Kullback-
Leibler and Cressie-Read divergence measures in the case of non-probability vectors, con-
cluding that under some circumstances these can be used as proper divergence measures
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and proposed the use of an extra constraint in the minimization problem, i.e.,
i n n
Vi) D> ve = ug.
=1 =1

Constraint (vi) has the meaning that the overall probability of observing a death in the
year span is the same for both the observed and the graduated values.

A unifying way to obtain the graduated valugswas proposed and investigated by the
authors in [32]. This is to minimize the Cressie-Read divergence betwaedu

(Z)A_ll , A€ R—{0,-1},

for given A subject to constraints (i) - (v) and/or (vi). In this paper, as stated above, we
investigate the role of the Jensen difference.

1
ICR(V,U) = m va

x

3 The Jensen difference

The Jensen differencé(p*, q*) is a special case of the Jensen-Shannon divergence
(JSD) defined in [22] as

JS(p*,q*) = H(ap* + (1 —a)q*) —aH(p*) — (1 —a)H(q")

for a = 1/2 [26]. Since then there is a confusion in the use of names Jensen-Shannon
divergence and Jensen difference in the bibliography. In the present paper when will use
the name Jensen difference we will refer to the meadiffe’, g*). If we consider the
function¢(z) = axlnx — [ax + (1 — a)]In(ax + 1 — a), ISD can be seen as a particular
case of thep-divergence ( [26], [36]).

The Jensen difference is a natural measure of divergence between the probability vec-
torsp* andq* as it satisfies the two basic properties of a divergence measure. It is non-
negative and vanishes if and onlygf = g*. An interesting property of (p*, g*) is that
considered as a function gp*, g*), it is convex [9].

3.1 The Jensen difference with probability vectors

The properties of Jensen’s difference as a measure of divergence have not been fully
investigated. The following lemma gives the connection between the Jensen difference and
the well known Kullback - Leibler directed divergence.

Lemma 3.1. The Jensen difference with probability vectprs q* is connected with the
Kullback - Leibler directed divergence through the equation

J(p*7q*) — % [IKL(p*, (p* +q*)/2) + IKL(q*, (p* +q*)/2)] .
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The above equation can be used in order to examine the information theoretic properties
of Jensen’s difference. In terms of the symmetric Jefréydivergencejef(p*,q*) =
I5L(p* q*) + L (q*, p*), Crooks in [10] gave an upper bound for Jensen’s difference,

2
T exp{—3Jef(p*,q*)}

The classicall(p*, q*) exhibits several interesting properties [17]. Among them we
mention that it is symmetric and always well defined, it takes values between 0 and 1, and
its square root/J(p*, q*) verifies the triangle inequality whilé(p*, q*) does not [13].

For an exhaustive enumeration of the JSD properties we refer to [14].

Generalizations of the Jensen difference have been given in [35]. A relationship be-
tween the well known Fisher information measure and two different scalar parametric gen-
eralizations of Jensen’s difference divergence was established in [28]. Relationships with
the Cramer-Rao inequality were also established in the same paper.

MeasureJ has been used for measuring the distance between random graphs, for test-
ing the goodness-of-fit of point estimations, in the analysis of DNA sequences and in the
segmentation of textured images. In addition, by making use of its ability to be general-
ized to an arbitrary number of probability distributionshas been used to quantify the
complex heterogeneity of DNA sequences as well as to detect borders between coding and
noncoding DNA [14].

We now turn to study the sampling properties of estimated Jensen differences. For the
sake of Lemmas 3.2 to 3.5, which follow below, we change the notafiowill denote
the dimension of the two discrete finite probability distributiggtsand gq* andn or m
the size of multinomial samples. &* is known and an estimatg* of p* is available

J(p*,q*) <1

from a multinomial sample:, ..., z, Zi—ll x; = n obtained from populatiop* then
J(p*,q*) is estimated by/ (p*, q*) with p} = z;/n,i = 1,..., k. If g* is unknown but it
is estimated on the basis of a multinomial sanple.. . ., v ), independent ofz, . .., )

ande:1 yi =m, ¢ =yi/m,i =1,...,kthenJ(p*,q*) is estimated by/(p*, q*).
The means and variances.&fp*, q*) andJ(p*, @*) are given in the following lemmas.

Lemma 3.2. The mean off (p*, g*) is given by

k
X 1 q; (1 —pj)
BTGB . o) ~ * o) 4 Li\" T Fi)
[J(p*, a")] J(p,q)+4nz e
i=1 v g
k
1 p;(1—pj)
_ J *7 * +7 k 1_ ) v
(P a’) 4n( ;pf+qz*
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Lemma 3.3. The mean off (p*, @*) is given by

Ak Ak qz ]‘7pz p’L ]‘7p2
ElJ(B",a")] =~ J(p Z T Z T

while its variance is given by

*

o) = 505 ()] e o )
el S ()] o)

=1 ?

Proof. The results for both lemmas follow after some algebra and using known results on
the multinomial distribution, the mean and the variance of the estimatiéidergence [41]
and the fact that the Jensen difference is a particular case otdhergence. O

The following lemmas give the asymptotic distributionsigp*, g*) andJ(p*, q*).

Lemma 3.4. If (z1,...,z) is multinomialM (n, ¢, . . ., gi), then the quantity
k k
i=1 i=1

k
x i + ng;
—nlnn — Z(xl +ng)In <2nq>] = Xi—1-

=1
Proof. The lemma is an application of [41, Theorem 3.2] and thus we omit the prdaf.

Lemma 3.5. Let (x4, ..., x), (y1,---,yx) two independent random samples from multi-
nomialsM (n,pt, ...,px) andM(m, g7, ..., g;), respectively. Then i = q the quantity

8mn

k k
8
n+mJ(f)*’q*) = {mszlnxl—mnlnn—i—nZyllny,—mnlnm

n—+m
i=1

k
mx; + ny; L
=1

Proof. The lemma is an application of [18, Corollary 2] and thus the proof is ommited.

Lemmas 3.2 and 3.3 indicate thatp*, q*) andJ (p*, @*) are asymptoticaly unbiased
estimates of their corresponding counterparts and give their asymptotic variances. Lemmas
3.4 and 3.5 provide the means to construct tests of goodness of fit and tests of equality of
divergences, etc based on one or more samples from multinomial populations. For details
see [41] and [18].
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3.2 The Jensen difference without probability vectors

In this subsection we will explore the properties of the Jensen difference when we have
non-probability vectors. This supplements our previous research on the properties of di-
vergence measures without probability vectors [32]. In the sequelpéth(p,, . .., p,)T
we will denote the non-probability vector with real nonnegative components, while with
p* = (pt,...,p5)", pf = pi/ >, i, i = 1,...,n the corresponding probability vector.
Similarly for g andq*.

Definition 3.1. We define by
J(p,q) = H(3(p+q)—35[H(p)+H(q), (3.1)

the Jensen difference between the non-probability vegiots (p1,...,p,)" andq =

(q1,---,q0)T, where} ", p; # 1,3, ¢; # LandH(p) = — Y, p; Inp; is the "Shannon
entropy” of p.

Lemma 3.6. For the Jensen’s difference without probability vectersg the following
equation holds

e = (p’*zpi *‘”Z‘”> ! B (pri w-*Zqz—)]
;:1 . i=1 7,:2 . =1 Z:i
3 {;pi [H(P*)—ln;pi +;Qi [H(q*)—ln;qi]}.

Proof. For the Shannon’s entropy without probability vectors we have that

=Y pilnpi==Y_ (pf sz) In (PfZ}%)
i=1 i=1 i=1

i=1
= —>n [prlnP?Jrlnzpi] => p [H(p*) 1n2p1:] :
=1 =1 =1 1=1 =1

whereH (p*) = — Y7, pf Inp} is Shannon’s entropy related to the probability vegtor
Similarly we have that

H(p)

@)=Y q [Hm ) qi]

and

n

H(3(p+q) = *Z% (p?ZpHquZqi) In E (p;zpiJrq;ZQi)] :
=1 1=1 1=1 =1

i=1

Thus replacing the above expressions to Equation 3.1 the desirable result is obtaifed.
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We observe that entropi/ (1 (p + q)) cannot be written in terms df (1 (p* + q*)).
This makes it difficult to find an easy and general expression connecting Jensen’s difference
without probability vectors with Jensen’s difference with probability vectors and then study
its properties.

In the sequel we willassume that" , p; = > ., ¢;. This is the minimal requirement
for a measure of divergence without probability vectors to be considered as a typical mea-
sure of divergence [32]. The relation connecting Jensen’s difference without probability
vectors and Jensen'’s difference with probability vectors is given in the following lemma.

Lemma 3.7. If }°.p; = >, ¢, then for the Jensen difference involving non-probability
vectorsp, q, it holds that

J(p,q) = (Zp) J(p*,q"),
whereJ(p*, q*) is the Jensen difference between the two probability vegtorg*.

Proof. The desired result is easily obtained, substituting into Equationf3(b,), H(q)
andH (1 (p + q)) given in the proof of Lemma 3.6. O

Now we have to see if this measure has information theoretic and divergence properties.

Proposition 3.1. Let) ", p; = >, ¢; > 0. ThenJ(p,q) > 0 with equality if and only if
p = q, wherep andq are non-probability vectors. Moreovef(p, q) < >, p;.

Proof. The proof is obvious sincé(p*, q*) > 0 if and only if p* = q* andJ(p*,q*) <
1. O

Note also that in view of the properties dfp*, q*), v/J(p,q) is a metric for non-
probability vectors.

Definition 3.2. (Bivariate Shannon entropy) Letx,y) be a bivariate non-probability
function associated with two discrete variablés, Y in R? for which it holds

> s 2y P(x,y) # 1. We define the Shannon entropy involving a non-probability func-
tionp as

Hyxy(p)=->_Y pla,y)np(x,y).

Definition 3.3. (Conditional Shannon entropy) For the discrete variablesy” and the
bivariate non-probability functiop(z, y), as given above let(z) = 3° p(z,y), h(ylz) =

2EY g(y) = 3, p(w,y), andr(zly) = 2540 We set

Hy|x=.(h) = Zh(ylw) Inh(ylz), Hxjy=y(r) = Zr(ﬂy) Inr(zly)

Yy x
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and define

Hy|x(h) = Ex [Hy|x—(h)] = Z f(z) Z h(y|x) In h(y|x),

Hyy(r) = By [HX|Y u( Zg Z zly) Inr(zly).

Definition 3.4. (Bivariate Jensen dlfference) Let(z,y), « = 1,2, be two bivariate
non-probability functions associated with two discrete variatfesy” in R? for which
itholds>_, >° pi(x,y) # 1. We define the Jensen difference between two bivariate non-
probability functions,, p2 as

Jxy(p1,p2) = H(3(p1+p2)) — 5 [H(p1) + H(p2)]
= S () + pale ) (L pa(a, ) + o)

-1 ZZpla:ylnplxy Zszxylnpzxy)

Definition 3.5. (Conditional Jensen difference) For the discrete variablesy” and
the bivariate non-probability functions;(x,y), ¢ = 1,2, as given above lef;(xz) =
¥, pi@,y), hilylz) = 22, gi(y) = X, pil,y), andri(aly) = Y = 1,2,
We set

Jyix=z(h1,ho) = H(3(h1+hs)) — % [H(hy) + H(hy)]
= X ) ) )+ o)

-3 l Zzhl (ylz) Inha (y[z) — Zth (y|z) In hy y|x)1 ,

and define

Jyix(hi,ha) = Ex [Jy|x=s(h1,h2)]
= _Zfl Z (h1(yla) + ha(yla)) n(5 (ha (y]z) + ha(ylz)))

-1 [_Zfl(x)Zhl(y|x) In Ay (y|z) — Zfl th y|z) lnhz(ylx)] :

The conditional Jensen’s differendg |y (11, r2) is defined analogously.

Proposition 3.2. (Strong Additivity) Lepy, po be two bivariate non-probability functions
associated with two discrete variablég Y in R? as in Definition 3.5. Then

Ixy (p1,02) = Ix(f1, f2) + Jy|x (h1, h2) = Jy (91, 92) + x|y (r1,72),

where the functiong;, h;, g;, r;, ¢ = 1,2 are as in Definition 3.5.
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Proof. It is known [33] that
HX*7y* (p:) = Hx~ (fq*) =+ HY*|X* (h?) = Hy~ (g:) =+ Hx*‘y* (’I"Z), 1= 1, 2.
Thus, we have that

Jx-y+(01,p5) = Hx+y+ (307 +03)) — 5 [Hx+ y+(p7) + Hx+ v+ (p5)]
Hx-(5(fT + f3)) + Hy+ x+ (5 (h] + h3))

—5 [Hx+(f7) 4+ Hy+x+(h}) + Hx+ (f3) + Hy+|x+ (h3)]
Ix+(f7, f3) + Jy+x+(h1, h3),

which means that the strong additivity property holds for the Jensen difference. Similarly
it holds that

JX*,Y* (p;apg) = JY*(QT?Q%) + JX*|Y* (TI,T%).

For the variablesy, Y we have that

Jxy(p1,p2) = <ZZP1(9€7Z‘J)> Jor .y (P1,P3)

= (Z Zm(x,w) [ (F20 £2) + Ty e (b, 13)]

Ix (f1, f2) + Iy x (b1, ha),

since)_, >, pi(z,y) =3, fi(z) =3, g1(y). In a similar way, we prove that

Ixy (p1,p2) = Jy (91, 92) + Ix |y (r1,72).

For weak additivity we have the following proposition.

Proposition 3.3. (Weak additivity) Ifh; (y|z) = ¢:(y) and thusp;(x,y) = fi(z)g:(y),
i = 1,2, we have that the random variablés*, Y*, which are the “standardized” values
of X, Y, are independent, then

Jx v (p1,p2) = Jx(f1, fo) + Jy (g1, g2)-
Proof. It is known [33] that

Hx«y+(p}) = Hx«(f}) + Hy-(g}), i = 1,2.
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Thus, we have that

Jx-y+(p1,p03) = Hxy-(3(p7 +5)) = § [Hx+ v+ (p7) + Hx+ v+ (p3)]
Hx-(5(f1 + f3)) + Hy+ (5 (g7 + 93))

—5 [Hx+(f) + Hy-(g7) + Hx-(f3) + Hy+(g3)]
Ix+ (15 f3) + Jy+ (91, 93),

which means that the weak additivity property holds for the Jensen difference.
Then for the variableX, Y we have that

Jxy(p1,p2) = <Zzp1(ﬂc,y)> Jx v+ (p},p3)

(Z Zpl(-r7y)> [JX* (f{vfg) + IY* (gf,g;)] :

Sinceitholdsthap_, >, pi(z.y) =>_, fi(z) = >, 9:(y), i = 1,2 we finally have that

JIx,y(p1,p2) = Ix(f1, f2) + Jy (91, 92)-
O

Proposition 3.4. (Maximal information and sufficiency) L&t = T'(X') be a measurable
transformation ofX andp; = p;(x), g; = ¢:(y), i = 1,2. Then

JIx(p1,p2) > Jy (91, 92),

with equality if and only iy is sufficient with respect to the pair of distributiops and
p3, Y* and X* being the normalized versions Bfand X, respectively.

Proof. Let g;(y) be the measure associated with Theng;(y) = . pi(z). The
z:T(z)=y
following inequalities are equivalent

Ix(p1,p2) > Jy(91,92) &
<Zp1(fv)> Jx+(pY,p5) (Z gl(y)> Jy+ (91, 95)-

Since)_, pi(x) = >, g:(y), i = 1,2, the last inequality is equivalent to

v

Jx+(p1,p3) = Jy+(97,95),

which always holds. Equality holds if and only if the statistic = 7(X™*) is sufficient.
O



288 Sachlas, A. and Papaioannou, T.

One basic property of measures of information and divergence is the limiting property.
This property asserts that a ser{€$,, } of random variables converges to a random variable
X in distribution whemm — oo if and only if Ix, — Ix, wherel denotes the informa-
tion measure. Under some conditions the limiting property holds for the Kullback-Leibler
divergence (see [16] and [40]).

The limiting property holds for the Csiszar's measure of divergegediergence)

[40]. So the limiting property holds for the Jensen difference with probability vectors as
it is a member of thes-divergence family for propeg(z). In the next proposition we
investigate whether the limiting property holds in case we do not have probability vectors.

Proposition 3.5. (The limiting property) Lef{p,,} be a bounded from above sequence of
non-probability vectors. Thep, — pif and only if J(p,,,p) — 0.

Proof. Letp,, — p. Using Lemma 3.7 we have
lim J(p,,,p) = (hm an(z)> lim J(p;,p*) =0,

becauselim J(p},p*) =0.
On the other hand, lef(p,,,p) — 0. Then

: N (Pa()
i S atie (55 o
whereg(z) = 3 [xInz — (z + 1)In (ZH)], 2 > 0is a continuous function with(1) =
0.

Suppose thap,, — p does not hold. So there is a subsequence ns < ... <ng < ...
of integers and a vectay such that

lim p, =qandp #q. 3.2)
Becausey is continuous we have that

i o0 (555) = o0 (555)

However{zip(i)qs (p;(—z()”)} is a subsequence oﬁzip(i)qb (”p(g))} which con-
verges tap(1) = 0. Thus

S (i) (q(”) —6(1) =0,

- p(2)

which is possible only ip(i) = ¢(¢), which contradicts Equation 3.2. Thus we have that
p,, — P, so the limiting property holds for the Jensen difference. O
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Summarizing the above results, we have that the Jensen diffef&pcey) for non-
probability vectors, under some conditions is nonnegative, additive, invariant under suffi-
cient transformations, it shares the property of maximal information and the limiting one.
Thus, we can regard(p, q) as a measure of divergence, provided thgtp; = >, ¢,.

The study of the properties of Jensen’s difference without probability vectors, along
with the results of our previous research on KL and CR measures [32], lead us to say that
the equality) ", p; = >, ¢; constitutes the minimal requirement for a bivariate function
D(p,q) to be a measure of divergence along with the statementptq) > 0 with
equality if and only ifp = q.

Since the Jensen difference can be considered as a divergence measure we can use it
in order to graduate actuarial entities, in the way we describe in Section 2.2. This involves
convex minimization with constraints and can be done using standard routines. However,
it is of interest to examine its Lagrangian dual.

3.3 Lagrangian duality for the Jensen difference

The quadratically constrained Jensen difference problem is defined as fixdiag
(x1,...,2,)T € R™ which solves the primal problem

n

n n
(P) min— Y +(z; +d;)In (3(z; + dj)) + % Zl zjlnx; + Zl d;Ind;
Jj= i=

j=1
subject to

gi(x) = %XTDix+b?x+ci <0,i=12,....mym=2(n+1), x>0,
whered = (dy, ..., d,)"T is a given vector with strictly positive componeniB; is a given

positive semi-definite matrix for eaghb,; € R™ andc; are given constants not both equal
to zero. Constraints (i) - (v) of the actuarial graduation problem of Subsection 2.2 can be
written in the previous form of;(x) < 0. For details see [32].

In the sequel, we will try to derive a dual representation of the primal problenby
means of Lagrangian duality by using a simple decomposition argument to convert problem
(P) into an equivalent convex program with linear and quadratic constraints. BebPgause
is a semipositive definite x n matrix, we can express it 83; = AT A;, whereA, is an
n; X n matrix andn; is the rank ofD;, 7 = 1,2, ..., m. In this case the constraints can
be written asy;(x) = 1x7 AT A;x + b!'x + ¢;. Defining the new variables, = A x,

u; € R™,i=1,2,...,m, the problem P) is equivalent to the following convex program
with linear equality and quadratic inequality constraints:

(P*) min — Zn: Haj+dj)In (3(z; +dj)) + 3 il zjlnz; + anl d;Ind,

J= J=

xX,u;

subject to

%u?ui—i—bfx—i—ci <0,A;x=u;,u; € R",1=1,2,...,m,x > 0.
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Letu = (u,...,un)’ € R" x ... x R" andy = (y1,...,ym)? € R% x ... x
R™ . We now have

Theorem 3.1. The Lagrangian dual problem @) is given by

n

d; d;e?si 1 d;
PR (8 SRR SN TE N WA T
)\eRr7yieRni = 2e%%i — 1 2e4%i — 1 2 2e4%i — 1

3l ||yz|| el dTZ}7

[\D\P—‘

wherez” = (Indy,...,Ind,).

Proof. The Lagrangian function for proble(®) is

n

=D s(aj +dp) I (3(z; + dy) Z:rgln:ijer In d,
j=1

m 1 m
+Z>\1 <2ul u; +bTX—|—cz> —|—ZyiT (Ax — wy)

i=1

L(x,u; Ay)

1 n n
= fZ%(ijrd])ln(%(Ijer +§ ijln:ijerjlndj
j=1 j=1

j=1
Z()\bT_FyzA)x—}—)\Tc—FZ( )\u u; — y;rui),
i=1 i=1

wherey; € R", i = 1,2,...,m are vector Lagrange multipliers while the Lagrangian
dual objective function of problertP) is given by

h(Ay)=_ _ nf LxwAy).

The dual problem associated witF?) is defined as

(D) sup  h(Ay).
AERT .y ER™i

With A we denote the vector of Lagrange multipliers of the primal problem associated with
constraint%uiTui + biTx + ¢; < 0 while with y the vector of vector Lagrange multipliers
associated with constraints;x = u;, u; € R™,i = 1,2,...,m. Using the fact that the
Lagrangian function is separable in the two decision variablemdu [5], we derive an
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explicit form for the dual objective functioh(\, y) [37] as follows:

1
h(A = fz inf {é zj+d;)In (3 (z; + d))) +§xj1nxj

(E17

+ Z inf {;)\iu;‘rui — yiTui} +c'A+d7z. (3.3)
Let us now denote the terms involviags of the right hand side of(x, u; A, y) by

fsAy) = =) 3 +dj)In(3(x; +dy))

zilna; + Y (Ab] +y! A)x. (3.4)

j=1 i=1
It is easy to see that

1 m
—Inz; + Z()\ibT +ylA);

0 1
aTjﬂXQ)MY):_gln(%(l’j‘f'dj))"'2 -

In order to find the optimal point, we set the above equation equal to zero, so we have

if(><;>\>y) 0«

817]‘

d;j

2 exp {2 > (AibT +yZTA1Z>j} -1
i=1

Zj

(3.5)

Substituting Equation 3.5 to Equation 3.4, and setting= > (\;b! + y7 A;);, j =
1,...,n we have that

1 d;

— d:llnl = —2 4+ d.
Z (6281—1+ )n(Q (2623j_1+ J)>
- J d;

+2;2625J—1ln( e2si —1 >+Z ]QBQSJ—l

dje?si dje?si I~ d; "\ djs
_ - 1 J J
226253—1 <26251—1>+2;26281—1 n(2€25] _ ) +22€251_
n dj 2. dje%j 1 dj
_2126283'—1{6 Jln<26251—1 _§ln 225 —1) %I (>
J=

which is the minimum value of the first infimum in Equation 3.3.
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Settingg(u; A, y) for the last term of the Lagrangian functidrix, u; A, y), i.e

(1
suixy) =3 (Ghulu; -y 36

we have that

aiig(u; Ay) = Aiu; —y;.

In order to find the optimal point, we set the above equation equal to zero, so we have

P A = 0
6)uig(m ,Y)
Au; =y,
which means that )
P = —V;. 3.7
W=y (3.7)

By substitution of Equation 3.7 to Equation 3.6 we have that

m T m 2
1 1 1 1 L llyill

E “Xi| —yi —vi| -yl (~w :—*g )

i1 (2 <)‘iy> <)‘iy> v <)‘iy>> 21‘:1 Ai

which is the minimum value of the second infimum in Equation 3.3. O

Theorem 3.2. (a) If (P) is feasible therinf (P) is attained andmin (P) = sup (D).
Moreover, if there exists ar € R™ satisfyingx > 0, g;(x) < 0,7 = 1,...,m, then
sup (D) is attained andnin (P) = max (D).

(b) If x* solves the primal problerdP) andy; € R™, A* € R solve the dual
problem(D), then

d;

2 exp {2 Z()\:b;‘r eri*TAi)j} -1
=1

*

Proof. The proof of the theorem can be obtained via standard duality results (see for ex-
ample [19], [30] or [5]).

(a) Because of the nonnegativity of the constraints,Aex R, of the dual problem
(D), this satisfies the strongest constraint qualification which implies lack of duality gap
and attainment of the primal infimum. Thus the first part follows immediately. The second
part follows from the definition of duality.

(b) The optimality condition foxx = x* to solve the minimization ok(A,y) given in
Equation (3.3) is the optimal solutiarf, given above, and thus the desired result follows.

By part (a) we have that a saddle pointx*,y;,A*) exists and so
miny>o L(x,y7, A*) = L(x*,y7, A%) [2]. O
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4 Numerical lllustration

4.1 Determination of a client’s disability distribution with Jensen’s difference

In this subsection we use the Jensen difference to determine the disability distribution
that meets the special characteristics of a client than the reference table that the insurance
company uses. The data that we use comes from [4, Table 13.2]. It is a standard table
of probabilitiesg; with mean duration:,; = 31.35 days given in the second column of
Table 4.1. It is easy to notice that_, ¢ = 1. Suppose that we have a client with
expected disability duration gf = 21 days and we want to construct a duration table
for this particular client which is the least distinguishable from the standard one. This
problem was also solved by Brockett [6] by minimizing the Kullback-Leibler divergence
between the unknown probabilities for the client and the corresponding probabilities of the
standard table subject to the constraint8_, p; = 1and)_"_, z;p; = 21. His results are
shown in the third column of Table 4.1. Our approach is the minimization of an alternative
divergence - the Jensen difference - subject to the same constraints.

The results are shown in the fourth column of Table 4.1. We followed the same pro-
cedure in order to derive the duration table for two clients with- 26.8 andu = 38,
respectively. Comparing the results via the smoothness meSsu:reZ;:f’ (A3p;)2,
whereA is the difference operator, and the mean square aifr6> = % S (qr —pp)?

(given in Table 4.2), the best disability distribution fer= 21 andy = 26.8 is obtained
through the minimization of the Jensen difference while/fer 38 the best disability dis-
tribution is obtained via the minimization of the Kullback - Leibler divergence. A further
numerical illustration allows us to propose the use of the Jensen difference:mign,,

and the use of the Kullback - Leibler divergence when- 1, wherepu,, is the mean
duration of the standard table.

4.2 Actuarial graduation

For the illustration, we will use a data set of death probabilities coming from [23, p. 20].

It consists of 15 death probabilities belonging to ages 70 to 84 (computed from a total of
2073 observations). These data set was graduated by London in [23] by graphic means and
a linear transformation of the graduated values and by Brockett in [6] via the minimization
of the Kullback-Leibler divergence subject to constraints (i) - (v).

We graduated the crude values via the minimization of the Jensen difference. The min-
imization was conducted subject to constraints (i) - (v), proposed in [6], the additional
constraint (vi) that Sachlas and Papaioannou proposed in [32] and finally subject to con-
straints (i) - (iii) and (vi). The sixth constraint we propose has no any particular actuarial
interpretation. However it is necessary in the light of the information theoretic properties.
The relevant results are presented along with the raw data in Table 4.3(a). Graphically, the
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w=21 =268 =238

Standard| K-L Jensen K-L Jensen K-L Jensen
0.03500 || 0.05081| 0.05298|| 0.04101| 0.04130|| 0.02777| 0.02810
0.03474 || 0.04968| 0.05151|| 0.04048| 0.04073|| 0.02775| 0.02806
0.03349 || 0.04717| 0.04865|| 0.03880| 0.03901|| 0.02694| 0.02721
0.03318 || 0.04604| 0.04724|| 0.03822| 0.03841| 0.02687| 0.02712
0.03195 || 0.04367| 0.04459|| 0.03660| 0.03675|| 0.02606| 0.02627
0.03160|| 0.04254| 0.04324|| 0.03599| 0.03612|| 0.02595| 0.02614
0.03040 || 0.04031| 0.04079|| 0.03443| 0.03453|| 0.02514| 0.02530
0.03002 || 0.03921| 0.03951|| 0.03381| 0.03388|| 0.02499| 0.02513
0.02885 || 0.03712| 0.03725|| 0.03231| 0.03236|| 0.02419| 0.02430
0.02701 || 0.03423| 0.03423|| 0.03008| 0.03011|| 0.02280| 0.02289
0.02530 || 0.03159| 0.03147|| 0.02801| 0.02803|| 0.02150| 0.02157
0.02370 || 0.02915| 0.02894|| 0.02609| 0.02609|| 0.02028| 0.02033
0.02222 || 0.02692| 0.02664|| 0.02433| 0.02431|| 0.01915| 0.01917
0.02083 || 0.02485| 0.02452|| 0.02268| 0.02265|| 0.01808| 0.01808
0.01953 || 0.02295| 0.02258|| 0.02114| 0.02111|| 0.01706| 0.01706
0.01831 || 0.02120| 0.02080|| 0.01971| 0.01967|| 0.01611| 0.01609
0.01772 || 0.02021| 0.01978|| 0.01897| 0.01892|| 0.01570| 0.01567
0.01662 || 0.01867| 0.01823|| 0.01769| 0.01764| 0.01483| 0.01479
0.01611 | 0.01783| 0.01737|| 0.01705| 0.01699|| 0.01447| 0.01442
0.01510| 0.01646| 0.01600|| 0.01589| 0.01583|| 0.01366| 0.01361
0.01465 || 0.01573| 0.01526|| 0.01533| 0.01527|| 0.01334| 0.01328
0.01374 || 0.01453| 0.01408|| 0.01430| 0.01423|| 0.01260| 0.01254
0.01334 || 0.01390| 0.01344|| 0.01380| 0.01374|| 0.01232| 0.01225
0.01295|| 0.01329| 0.01283|| 0.01332| 0.01325|| 0.01204| 0.01196
0.01214| 0.01227| 0.01183|| 0.01242| 0.01235|| 0.01136| 0.01129
0.01180|| 0.01175| 0.01132|| 0.01200{ 0.01193|| 0.01112| 0.01104
0.01106 || 0.01085| 0.01044| 0.01119| 0.01112|| 0.01050| 0.01041
0.01076 || 0.01039| 0.00999|| 0.01082| 0.01075|| 0.01028| 0.01020
0.06361 || 0.05873| 0.05634|| 0.06290| 0.06247| 0.06206| 0.06145
0.04832 || 0.04014| 0.03846|| 0.04592| 0.04557|| 0.04947| 0.04886
0.03753 || 0.02805| 0.02698|| 0.03428| 0.03402|| 0.04032| 0.03976
0.02980 || 0.02004| 0.01943|| 0.02616| 0.02598|| 0.03360| 0.03312
0.02399 || 0.01452| 0.01424| 0.02024| 0.02013|| 0.02839| 0.02800
0.01939 || 0.01056| 0.01051|| 0.01573| 0.01567|| 0.02408| 0.02380
0.01586 || 0.00777| 0.00787|| 0.01236| 0.01235|| 0.02067| 0.02051
0.01300 || 0.00573| 0.00592|| 0.00974| 0.00976|| 0.01778| 0.01773
0.01077 || 0.00427| 0.00451|| 0.00776| 0.00780|| 0.01546| 0.01552
91| 0.12561 || 0.04690| 0.05025|| 0.08844| 0.08918| 0.18531| 0.18697

Table 4.1: Disability distribution determination through Kullback-Leibler divergence and Jensen'’s
difference
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w=21 ©w=26.8 =238
KL Jensen KL Jensen KL Jensen
S 0.02308 | 0.0217 0.0298 0.0296 0.5027 0.0504
MSE | 0.000219| 0.000214| 0.000045| 0.000044|| 0.000108| 0.000112
Table 4.2: Comparison of the disability distributions

results in a logarithmic scale are presented in Figure 4.1.

The results appear nearly equivalent to those presented by London and Brockett. The
differences are small. The value of the smoothness measere "> (A‘"’vl.)2 and the
goodness of fit measures, i.€. = " w,(uy — vy)?, wherew, = I/ (uz(1 — uy))
are weights witH,, being the number of people at risk at agdog-likelihoodlog L(v) =
Yo ldylog vy + (I — dy) log(1 — v,)], devianceD(v) = 2log L(u) — 2log L(v) and
X2=Yr, % are given in Table 4.3(b). The numerical investigation in [32], with
same data set, compared the graduations made in [6], [23], and through the use of Cressie-
Read power divergence. The overall winner is the graduation through the minimization of
the Jensen difference subject to constraints (i) - (v), as judged by smoothness and fidelity.
However we believe that constraint (vi) is necessary as this is the minimal requirement for
the Jensen difference (and other measures, such as the Kullback - Leibler divergence and
the Cressie and Read power divergence) with non-probability vectors to be a measure of
divergence.

-15

— log(u) log(v) (6 constraints)
- --- log(v) (5 constraints) ----- log(v) (4 constraints)

log(mortality rates)

-25

-3.0
|

70 72 74 76 78 80 82 84

Figure 4.1: Several graduations through the Jensen difference
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(a) Graduated values

x | wug | v, (5constraints) v, (6 constraints) v, (4 constraints
70| 0.044 0.062 0.054 0.059
71| 0.084 0.066 0.061 0.064
72| 0.071 0.071 0.068 0.069
731 0.076 0.075 0.075 0.073
741 0.040 0.080 0.082 0.078
751 0.104 0.086 0.089 0.085
76| 0.160 0.093 0.097 0.092
77| 0.058 0.099 0.104 0.098
78| 0.110 0.106 0.112 0.105
79| 0.093 0.113 0.119 0.112
80| 0.139 0.131 0.138 0.132
81| 0.154 0.156 0.159 0.157
82| 0.183 0.182 0.180 0.184
83| 0.206 0.209 0.201 0.212
84| 0.239 0.238 0.222 0.242

(b) Smoothness and goodness of fit values

5 constraintg

6 constraintg

4 constraints

S 0.000199 0.0002 0.0002
F 16.62 16.70 16.93
Deviance 16.40 16.89 16.48
log-likelihood -713.12 -713.37 -713.16
X2 16.59 16.68 16.93

Table 4.3: Several graduations through Jensen’s difference
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5 Conclusions

In this paper we studied the use of Jensen’s difference in actuarial science as an alterna-
tive measure of divergence in problems where the Kullback - Leibler divergence is mainly
used. Specifically, we investigated its use in two actuarial problems - the determination
of a client’s disability distribution and the graduation of mortality rates. Because in the
latter case, mortality rates do not form probability vectors, and in order td (jsgq) for
this purpose, we investigated the properties of the Jensen difference in the case of non-
probability vectors. We showed that, under some conditions it is nonnegative, additive
and invariant under sufficient transformations. It also shares the property of maximal in-
formation and the limiting one. So, we can regaftb, q) as a measure of divergence,
provided thaty ", p; = >, ¢;, and use it for graduation. Combining with results from our
previous research on KL and CR measures [32], this condition should be considered as the
minimal requirement for a bivariate functidi(p, q) to be a measure of divergence along
with the statement thab(p,q) > 0 with equality if and only ifp = q when we have
non-probability vectors.

We also provided Lagrangian duality results for the problem of minimizing the Jensen
difference subject to quadratic and linear inequality constraints. Especially, we derived the
Lagrangian dual problem, which proved to be unconstrained, and its solution. These results
are important in actuarial science, especially in the problem of graduation.

In the case of the determination of a client’s disability distribution, the Jensen difference
is a comparable alternative to the Kullback - Leibler divergence. The numerical illustration
allows us to propose the following empirical rule: use the Jensen difference phen
s While use the Kullback - Leibler divergence whan> u,,, whereu,, is the mean
duration of the standard table. The numerical investigation concerning the graduation of
mortality rates indicated that the minimization of the Jensen difference between the crude
and graduated rates seems to be the best "divergence” method. Targeting on smoothness
and goodness of fit, its results are comparable with those obtained using the Kullback -
Leibler directed divergence and the Cressie and Read power divergences.
AcknowledgmentsThe authors would like to thank the Editor and the Referee for their
valuable comments and suggestions.
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