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Abstract: We investigate the existence and multiplicity of nondesireg positive solutions for a fractional pantograph equratiia
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1 Introduction

Fractional derivatives and fractional integrals are vesgful tools in the modeling of many complex phenomena. To
see some of the applications of fractional differential atpns (FDEs) we refer the reader th 2,3,4]. In the book
[5], Baleanu et al. studied the recent developments in naadifractional dynamics, nonlinear vibration and contraol. |
[6] there are some recent achievements in fractional dynarimdg,8,9,10,11] one can find applications of fractional
differential equations in viscoelastic materials, biglogignal processing, heat conduction and thermal systenfis?],
Benson studied advection and dispersion of solutes in alaparous or fractured media by using fractional calculus.
For the theory of fractional calculus one can see the momigraf Kilbas et al. 13], Podlubny [L4] and Samko et al.
[15]. Some recent existence results to FDEs can be found inesr{i5,17,18,19,20,21,22,23]. Bhrawy et al. P4] used
spectral methods to solve various types of FDEs.

In this work, we investigate the problem

0f, (w(s) - P(&MAS) ) () = .. w(y)), te O.T] M
w(0) =W (0) =0,

where 1< a < 2,D§, denotes the Riemann-Liouville fractional derivative adera, 0< B,y <1, f : IxRT xR* - R*
is continuous wher®* := [0,), J:= [0, T] andP: J — R™ is of classC?.

The pantograph type equations emerge in the modeling of maolylems in sciences and engineering such as
economy, electrodynamics, control and biolo@$,R6,27]. Recently, Doha et. al2g] utilized a collocation method to
solve a class of FDEs of pantograph type. Balachandran Rgl.established the existence of solutions for the
pantograph problems of the form, namely

0, (w(e)~ hisw(Bs) ) (©) = f(tw(e.w(Bt)), t< (O.T] -

w(0) = wo,
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when 0< a,3 < 1, his a Lipschitz continuous function anidis completely continuous on a Banach spceThey
consider the above problem whii= 0 with a nonlocal condition. Balachandran et al. make useédeBanach and the
Krasnoselskii fixed point theorems to perform the existefaesolution for the mentioned problems.

The main purpose of this article is to discuss the existemcenaultiplicity of nondecreasing positive solutions to
problem @) with 1 < a < 2, utilizing the fixed point theorems.

We organize the manuscript as follows. In Section 2, somie l@$initions and results concerning fractional calculus
are shown. Also two required fixed point theorems are regafi¢his section. In Section 3, we establish the existende an
multiplicity of solutions for problemX). In Section 4, three examples are given to exemplify thenmegported results.

2 Preliminaries

Assume—w < a< b < +ow, n,a,p € C and denote the real part afc C by Rgz). The a'"-order Riemann-Liouville
fractional derivative and integral are defined by

" 1 d ot f
(Da+f)(t) = ,—(n a)w/a (t_s)(:)_n+1ds
S;(I” “f)t), t>a, Rea)>0, ©)
and ] R
1200 = 7 )/ Togreds t>a Re@>0 4)

respectively, such that= [Rga)]+ 1 whena ¢ N ([x] means the integer part fc R) [13].
The following Lemma shows the semigroup property of the afet, and the composition relation of the operatiffs

andDg+.
Lemma 1([13]) Assume Rer),Rg3) > 0and f € C[a,b]. Then for any t [a,b] we conclude that
C)

(1812 O = 157 D). (5)
(b)
(Daila) f)(t) = f(t). (6)
(0)If Re(a) > Re(PB), then
(DZ 1 (1) = (87D (0). )
(d)Suppose Rer) ¢ N and n= [Re(a)] + 1. Also assumenf 4 (t) = (157 f)(t) € C"[a,b]. Then
(n k)
(19,0, f)(t z rat k(j‘_)l —a)T K (8)

We denoteC, [a, b] to be the space of functiorfsdefined on(a, b] fulfilling (t —a)" f(t) € C[a, b] with the norm
[[fllcy = It —a)Tf(t)]lc.
We recall that we havg = 0,C;[a,b] = Cl[a, b]. The following lemma is about the continuity of the operator

13, :Cpla,b] — C[a,b].

Lemma 2([13]) Assume Rer) > 0and0 < Ren) < 1. If Rgn) < Rga), then the operatory, : C,[a,b] — Cla,b] is
bounded,namely
Mgy flic <l fllc,,

e TR@)IFA-RM))
= ) (L R )

(@© 2016 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl2, No. 1, 67-75 (2016) www.naturalspublishing.com/Journals.asp NS = 69

To establish the existence of solutions fib), we recall the following theorems.

Thegrem 3([30]) Assume Y is a Binach space alC Y is a cone in Y. LeQ;, Q, be open subsets of Y withe
Q1,Q1 C Qy, and suppose FZ N (Q,\ Q1) — & is a completely continuous map such that either

(Hy)|[Fw|| > |||, we 2N dQy, and||[Fw|| < ||w]|, we 2Ny, or
(H2)|[Fw|| < [[w||, we 2ndQy, and||Fw|| > ||w]|, we 2N aQs.

Then F possess a fixed pointifin (Q;\ Q;).
In the sequel, we recall a fixed point theorem due to the Leéglyfdliams [31].

Definition 1Assume Y is a real Banach space a#tlis a cone in Y. We say a mdp: & — [0,) is a nhonnegative
continuous concave functional o provided8 is continuous and

BAV+ (1—A)w) > A0B(V) + (1—A)B(w),

forany vw e &2 andA € [0,1].
Assumea, b, c > 0 are constants. We define

P.={we £ :|w|| < c}, 9)
Pe={we Z:||w|| <c}, (10)
2(8,ab)={we Z:0(w)>a,||w|| <b}. (11)

Theorem 4([31]) Assume that Y is a real Banach spa€@,is a cone in'Y and ¢ 0. Let 6 be a concave nonnegative
continuous functional or%” with 8(w) < ||w|| for any we #¢. Suppose E & — & denotes a completely continuous
map. Assume that there exist constdhtsa < b < d < ¢ such that

(h){we £(6,b,d): 8(w) > b} £ 0andOB(Fw) > b forwe #(0,b,d);
(h2)||Fw|| < afor ||w|| <a;
(h3)8(Fw) > b forwe £(6,b,c) with ||Fw|| > d.

Thus, F admits at least three fixed pointw. and w in 2 fulfilling

[lwi]] <a, b< B(wy), a< |/ws|| with 8(ws) < b.

3 Existence of Solutions

Supposega,b] C R is an interval. We denote b@'[a,b] the space of continuously differentiable functions [arb]
equipped with the norm

W] = [Iwllc + [[W]lc,
where||w||c := sup |w(t)].
telab]
Using the Lemmag and2, it can be easily show that € C1(J) is a solution of problengl) iff w € C%(J) is a solution of
the integral equation
w(t) = P(t)w(Bt) + (1§, f (s, w(s),w(ys)) (t), ted. (12)

So, we study the existence of solutions for integral equdfi@). We consider2) under the following conditions.

(i)P:J — R* is a function in the spadg*(J) with (2+ B)||P|| < 1 andP'(t) > 0.
(i) f : Ix R x RT — R™" is a continuous function which is nondecreasing with resfeits variables. Moreover there
exist constants > b > 0 such that

TA Ta—l
T 7@ g1 cc)<c (13)
) To9 ¢

f(n,%,0)(T —n)®

>
MNa+1) b, (14)
wheren = max{0,T — 1}.
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Let By ¢ C%(J) be an open ball centered at zero with radiamd define the operatéronC*(J) as follows:

(Fw)(t) := P()W(Bt) + (16, T (s, w(s), w(ys)) (1). (15)
Next, define the cone
2 :={weCHJ):w(t) >0,wW(t) >0} (16)
By the definition (5) fixed points ofF are solutions of integral equatiohZ).

Lemma 5Suppose PJ — R* is a function in the space’¢J) with P'(t) > 0and f: Jx Rt x R — R is continuous
and nondecreasing with respect to its variables. ThendFn (B¢ \ Bp) — & is continuous and compact.

ProofWe prove this lemma in the following steps.
1LE(Z)C 2.
Letw e &. Sincef andP are nonnegativéFw)(t) > 0 and by the assumptiond a < 2, Lemmasl and2 we have

%(I&rf(s,w(s),w(ys)) (t) = (1 f (s, w(s),w(ys)) (t) > 0, te .

Then by the assumptid?/(t) > 0 we have(Fw)’(t) > 0. This implies thaFw € Z.
2.F: 2n(B:\Bp) — £ is continuous.
Fix € > 0 and take arbitrarilyy,v € & N (B¢ \ Bp) with ||w— V|| < €. Fort € J we obtain
[(Fw)(t) = (FV)(t)] < [P(t)(w(Bt) — v(Bt))]|
L [T (w9 wis) sV
0

Ir(a) (T—-9gl-a
< Pt vl + ST a7)
where
ox(f, &) =sup{|f(t,w,v1) — f(t,wo,v2)| it €J, wi,vi € [0,¢], Wi —Vvi| <&, i=12}. (18)
Also we discover
[(Fw)'(t) — (Fv)'(t)] < [P'(t) (W(Bt) — v(Bt))| + BIP(t) (W (t) — V(1))
1 T [f(s,w(s),w(ys)) — f(s,¥(s),v(ys))]|
+ I'(a—l)/o (T -9 ds
w(f,e)Ta L
§(1+B)IIPIIIIW—VII+T (19)
Inequalities 17) and (9) yield that
TQa Ta—l
IF ) = F)l < @+ BIPIHIW=VII+ (o + gy (©) (20)

Sincef is uniformly continuous on bounded subsetdef Rt x R* and lettinge — 0, we infer thatuw(f, &) — 0. Thus
inequality @0) implies thatF : 22N (B¢ \ By) — & is continuous.
3.F:2n(B:\Bp) — £ is compact.
LetBc 2N (B¢ \Byp) and put
Mo = sup{f(t,w,v) :t € J,w,v e [0,c]}.

Then for anyw € B we have
[IFwl| = [[Fwllc + [[(Fw)'|lc < (2+ B)I[P]| |Iw]
1 /T |f(S,W(S),W(yS)) - f(S,V(S),V(yS))| ds
0

") (T—sra
1T [H(sW(S),W(ys) — f(SV(S).V(y9))
+I‘(a—1)/o (T_9gza ds
a a—1
< @+ BIPI+ 2 g + gy Mo
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ThenF (B) is bounded. Put
M := sup{F(w) : w € B}.

Now, we prove thaf (B) is an equicontinuous subset 6f. Lett;,t; € J andt; < to. For anyw € B, by mean value
theorem and using boundednes8afe conclude

[(Fw)(t) — (Fw)(t2)] < [P(to)[[w(Btr) — W(Bt2)| + |P(t2) — P(t2)[[W(Bt2)]

1 ty 1 1
+F@54 flswS)w(ys) (=g ~ g a)9s

1t f(sw(s),W(ys))
/t ds

Fa)l, (-9t
< cB|P|| [ta —to[ + ¢[P(t1) — P(t2)]
Mo
——  (2(tp — 1) +tY —t9 t . 21
+I‘(a+1)((2 D+t —t) 50 asty—t (21)

ThenF (B) is equicontinuous.

By using the steps 1-3 and the Arzela-Ascoli theorem, we find 22 N (B:\ By) — & is continuous and
compact. O

Theorem 6Under assumption§) and(ii), problem(1) has a nondecreasing positive solution it(@).
Prooflt is enough to prove that integral equatidi?( has a nondecreasing positive solutiol€i{J). To do this we prove
that the equatiofr x = x has a nonzero solution i#?. Now we show thaF satisfies the following inequalities
D)J[Fwi| < [|w]|, we ﬂﬂ{weci(J) H|wi| = ¢}
2)[|[Fw| = [|w]|, we ZNn{weCJ): |lw]| = b},
where constantb andc come from assumption (ii). Let € 22N {w e C}(J) : ||w|| = c}. SinceFw € &, and using
condition (ii), we have
[IFw]| = [[Fwllc+ [[(Fw)'[lc
1T f(sw(s),w(ys))
<(2 P
<@+ BRI+ gy | = —gre - ds
Sy ORI
MNa-1) Jo (T—s)2@a
f(T,c,c)T? f(T,c,c)T9?
+
MNa+1) r(a)
<c=|wl. (22)

+

S

< (2+P)lIPlle+

Then 1) it is satisfied. Now, lev € 22 N {w e C*(J) : ||w|| = b}. Sincew € &, b= [|w|| =w(T). Putn = max{T — 3,0}.
Using mean value theorem for ah¥¢ [, T|, we haveb — w(t) = w(T) —w(t) < b(T —t) < b(T —n). Thus,

2 <ba-(T-m)<wt), teln.T) (23)

By assumptions (i), (i) and inequalit8), we get

[IFwl| = [[Fwllc +[[(Fw)'[lc > |IFwilc
LT (s w(s.w(ys)
SC )/ T_gra o
f(n.8,0)(T —n)"
- Ma+1)

Then 2) it is satisfied. By Lemm&, (1) and (2), all conditions of the Theore&hold. ThenF has a fixed point in
ZN(Bc\ Bp). O

> b ={|w[],

In the sequel, using the Leggett-Williams fixed point theoreve prove the existence of three nondecreasing positive
solutions to problemi)). To do this we need the following assumption:

(@© 2016 NSP
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(i) f: IxRT x R™ — R* is a continuous function which is nondecreasing with resfeits variables. Moreover there
exist constants > b > a > 0 such that

TO TOa-1

ra+1) ' I'(a)
—= ) (T < 24
ey (o0 =¢ )

f(nvgvo)(T_n)a

raty P (25)

(Ta) Tﬁ

ra+1 ra
—— ) f(T 26
ey (2 <2 2

wheren = max{0,T —1}.

Theorem 7Assumgi) and (i)’ hold. Then problenil) has three nondecreasing positive solutionswg and ws such
that
[lwi]| <@, b<wy(T), a< |lws|| withws(T) < b.

Proof Assume the operatdt and the set” are defined byX5) and (L6). Using (i) and (ii), foranyw € Z;={we Z:
[lw|| < ¢, we findFw € &2 and

[[Fw]| = [[Fw]|c + [|(Fw)'[lc
1 [T f(sw(s),u(ys))
< @+ BRI I+ gy [ g ds
1T fsw(e,W(ys)
I'(a—l)/o T_gza s
(T,c,0)T®  f(T,c,c)To L

< @+ B)elPll+ g+ — <c @)

+

ThenFw € . Similar to the proof of Lemm&, we can prove thet : 72, — 2. is completely continuous. Now, define
the functionalb : &2 — R* as
6(w) =w(T).
Then# is a nonnegative continuous concave functiona®nConsidei, b, c given in assumptiofii)’. We definew(t) =
bie Thusw e 2 andc > [|w|| = B(w) = 25¢ > b. Therefore{w € 2(8,b,c) : O(w) > b} # 0. Letw € 2(6,b,c
i

).
Similar to the inequity Z3), we observ% <w(t) fort € [n,T], wheren = max{T — 3,0}. By assumptionsi) and ii )’
we obtain

B(Fw) = (Fw)(T) > (1§, T(SW(S).w(ys)) (T)
LT H(sw(e,w(ys)
> ey frosee o
f(na%ao)(T_n)a
[Ma+1)

> h.

Therefore, conditiorth; ) of Theorend holds if we putd = ¢. Now considew € %2 with ||w|| < a. Similar to inequality
(22) and using 26) we deduce

f(T.a,aT* f(T,aaT*?!
<
[[Fw| < (2+B)al|P|| + Flatd) + Fa) <a

The above inequality shows that assumptibs) of Theoremd holds.
Finally, we consider the assumptidns) of Theoremd. By inequality @7) for everyw € Z2(8,b,c¢), ||Fw|| < c. Now if
we consided = ¢, then(hg) holds.
Consequently satisfies the hypothesis of TheordnThen problem) has three positive solutionsg , w, andws which
are nondecreasing and

[lwi]] <a, b<wy(T), a< ||ws|| withws(T) <b. O
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4 Examples

We now give three examples to demonstrate the efficiency ofeswlts.
Example 1We consider the fractional pantograph equation with initanditions

t t
{ D1'75(W(S) _ 2s£§w(g))(t) _ w2(t>+(t+1)In(\w(t%g(z>\+1)+w2(z)+17 te (0,1, (28)

Set the followings

+(t+1)In(|xy| +1) +y>+1 P = 2t —t2
24 o227
T=1 a=175 B:g, y=-=.

f(t,x,y)—

One can easily see that f is nondecreasing with respect teaigbles and continuous 0f®,1] x R* x R and RAt)
is continuously differentiable of0, 1] with P'(t) > 0. Now, we consider conditions (i) and (ii) for probler28f. By
calculation we observe that
T T9t
I'(cr+1) + @y
—(2+B)IIP]|
1 1 (T-n)® _ 18
=max{0,T—=}=2, ——2—>_——.
n=max0T-3}=3 Fa31 100

3
P = —
Pl =, <3,

For c=1++v/3and b= 3, we find

TO T{Xl
r(a+1) r(a)
2 W )T ¢,¢) < 3f(T,c,c) ~2.525< 1++v3=c
=gy f(he0) <3 (Teo~
f(n,5,00(T—n)* 18 b 3
> =
FlatD) 100 (130 ~00077= 756 =b.

According to the above calculations, all assumptions offtheoreni’ hold. Then, the problen28) has a nondecreasing
positive solution in the space'(D, 1].

Example 2Let us consider the fractional initial value problem

DLS(W(s) — SEw(E)) (1) = F(t,w(t),w(})), te (0,2,
{w<o> —w(0)= (29)
where ,
XHee) 4 12, te[0,2]xe[0,1], ye [0,0),
ftxy) = 290 4 POt +82 te[0,2x€[1,10,y<[0,w),
tany) 1 (2100, VX 1729 1€ (0,2 x€ [10,00), y € [0,09).
Let us put
tr1
P(t) = ——
(t)= 35
3 1
T=2 a=1 -2 y==z.
, a 5 B 2 V=3
Easily, we find
1 —<Ta> T%
rMa+1 o
Pll=—, 2= W 426
Pl=22 1w
3 (T-n)¢
==, ———>026
M=% Tlaty - 0%
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Fora=1, b= 10and c= 10% we deduce

TO Ta—l

( r(a+1) W
1-(2+B)IIP]

f(n,3,0)(T —n)° b
> 0. = ~ 16. =
FaiD >0.26f(n,5,0) ~ 1670> 10=b,

TO T071

( r(a+1) W
1-(2+B)IIP]

)f(T,c,c) < 4.26f(T,c,c) ~ 316143< 10° =,

)f(T,a,a) <4.26f(T,a,a)~0.89<1=a

Then, using the Theorefnthe problem29) has three positive solutiongwv, and ws in C[0, 2] which are nondecreasing
and

we|| <1, 10<wa(2), 1< |jws|| with ws(2) < 10.

Example 3Finally, we consider the fractional pantograph equatiothwinitial conditions

{orome) () (1) = (tw(D)* + s () +w (). te (03] (30)
w(0) = W(0) = 0.
Now, we set
3.3 .3, 100mx B sin(')
1 1 1
T=3.a=19 B== y==.

Observe that ft,x,y) is continuous and nondecreasing with respect to t, x and ){00%1] x RT x RT. Also Rt) is

continuously differentiable i, %] with P'(t) > 0. To verify the hypotheses (i) and (ii) of Theorénwe need the following
estimates:

a a-1
V2 et o
pl|=Ys T 7@ 579
PI=36 1-@ra)P
1 (T—n)¢
= T—-=1= -~ .14,
n = max{0, 2} 0, I'(a+1)>0

For c = 0.28 and b= 0.14, we observe that

TO Ta—l
—+_
r(a+1) I (a)
T Tl y¢ ¢ ) < 0.79f(T,c,c) = 0.01372< ¢
(T@rpep) (100 <078 (T.e
f(nagao)(T_n)a b _ _
Bt D >0.141(n.5,0) = 0.14=b,

In view of the above calculations, all assumptions of theoféma6 hold. Hence, the problen3() has a nondecreasing
positive solution in the space D, 3].

5 Conclusions

Motivated by the applications of fractional differentigjeations, we established the existence of solutions fquithlelem

(1) including a fractional pantograph equation with initi@inditions. We showed that when the nonlinear part of the
equation is positive and monotonically nondecreasing véfipect to each of its variable and satisfies some geonietrica
conditions, the problemil] has nondecreasing positive solutions.
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