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1 Introduction following two beautiful identities:
In the sequel, we assume that < 1. For positive integer  H(q){G(q)}'— ¢?G(q){H(q)}*! = 1+ 11g{G(q)H(q)}°
n, we use the standard notation Q)
n-1 and
@qo=1, (&qn:= |'L(1—aqk)
= H(a)G(q™) —a*G(q)H (™) = 1. (2)
and (& 9)e = I_L(l —ad). For other details, proofs and further references, 8ge |
k= 11]. In view of the Ramanujan forty identities, many
We also write researchers studied Rogers—Ramanujan type functions
and established several modular relations involving them
(ag,@2,83, * ,an; Qoo = (a1, q)e0 (82; A)oo - * (@3 U)o and extracted some theorems in partitions. Two beautiful

analogues of the Rogers-Ramanujan functions are the
In the theory ofg-series, two of the most important results Gollnitz-Gordon identities, given byi, 16]
are the classical Rogers-Ramanujan identities which state ,
that 2 (—q99) 2 1
S(a) = ( > 2)qn =T (a7 B (Ao
e (@7 0°) (@%0%)=(9"0%)e (0% 0% oo

2
oo qn 1 —
G(q) = =
@ nZo @an  (958)e (%o and
and - (_q;qZ) n?+2n 1
T(q):= = .
. X @=2 @D P PP
H(@):= nZO (9;9)n - (02;,9°) 00 (03P ) oo - Using the idea of Rogers, Watsao?3 and Bressoudl[Z],

Huang [L6] and Chen and HuandlB] have established
Ramanujan 18] Recorded forty modular relations several modular relations for the Gollnitz-Gordan
involving the functions G(q) and H(qg) including functions and Baruah et all(] have given alternative
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proofs some of them by using Schroter’s formulas andfor a positive integemn. In this paper, we consider the
some simple theta functions identities of Ramanujanfollowing six functions of order thirteen which are
These functions were studied by Xia and Yad][ Septic  analogues to the Rogers-Ramanujan functions:

analogues of Rogers-Ramanujan type functions were

studied by Hahn 1517, Nonic analogues of U(q) ::(q,qu,qm:qm)w _ f(-a,-a9? (12)
Rogers-Ramanujan type functions were studied by (0 Q)eo f(—q)
Baruah and Bora9 and sextodecic analogues of the (@ gt 013 ). F(—2, —gth)
Rogers-Ramanujan functions were studied by Gug§ | V(q) = = : , (13)
and Adiga and Bulkhalig]. Adiga et al. f1,5,6] have (4 Q)e (-
studied several Rogers-Ramanujan type functions of W(q) _(6%.9"%0%0%) _ f(-0% —q") (14)
different orders. In20], Srivastava and Chaudhary have ' (3:9)eo f(—q
established relationships betweegn-product identities, (@02 0%).  f(—q*—oP)
continued fraction identities and combinatorial partitio X(q) i=—1—— = : (15)
identities. Recently, Srivastava et aR1] have derived (0 9)e f(-a)
several results involvingg—series and associated (PR 0%0%) e f(—0®,—q®)
continued fractions. (@)= (0,)e0 T f(—q) (16)
For |abl < 1, Ramanujan’s general theta function is
defined by ] and
- N C L T e o S G e )
fab):= § anm/zpnn-u/z €©) 2a): (0 Qo f(—a) ()

n=—oo

The Jacobi triple product identity in Ramanujan’s notation

is given by L, Entry 19]

f(a,b) = (—a;ab)«(—b;ab)«(ab; ab)w. 4)
The function f(a,b) satisfies the following basic
properties 1]:
f(a,b) = f(b,a), (5)
f(1,a) = 2f(a,a’), (6)
f(—1,a)= 0. (7)
Furthermore, ifn is an integer,
f(a,b) =a"™V/2p"("=D/2f (a(ab)" b(ab)™").  (8)

Ramanujan defined the following three special case3)of (

[1, Entry 22]:

¢(a) == Z o )e (00w, (9)
.: 3w nine1)/2_ (050
Y(a) :=f(a,q°) nzoq P (10)
and
(0 =f(a-a)= § 2= (g
) (11)

For convenience, we define

fo:=f(—q") = (d";9"),

A. V. Sills [22, Egs (4.20) and (4.21)], established that

2, o2
N=+2r+2nr+-2n+3r ( ~-

— n+r+1
V@ _n,rzgo (o ) 2n+2r+2(0; A)n(0; A)r

and

qn2+2r2+2nr(q; Dnsr

20 :néo (05 @20+ 2 (G D ()¢

In1974, G. E. Andrews/] obtained a generalization of the
well-known Rogers-Ramanujan functions to odd moduli,
namely for allk > 2, 1<i <Kk,

quz+N22+m+N§,1+Ni+Ni+1+m+Nk,1
(G )y (0 Az - (9 A
f(_qi7_q2k+1*i)
- f(-a,-%)
where Nj = nj +nj 1 +--- 4+ 1. We observe that,
functions defined in{2)—(17) can be obtained by setting
k=6 andi = 1,2 3,4,5,6 in the right-hand side ofl).

The following identity is an easy consequence of Entry 31
[1] whenn = 2:

n,n2,...,Nk-1>0

(18)

f(a,b) = f(ah,ab®) + af(b/a,a’?). (19)
Settinga=b = qin (19), we find that
¢(q") +2q9(q°) = ¢ (a). (20)

Using 20), one can easily establish the following lemma:
Lemma 1.
o~ () — o (V)P (—a)

=4 {9 (@) w(d®) — P @)} (1)
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Natural Sciences Publishing Cor.



Sohag J. Math3, No. 2, 67-75 (2016) www.naturalspublishing.com/Journals.asp

N <SS 2 69

Lemma 2We have

f2 fif
¢(-q) =4 and @(-a)=—*.
2 2

This lemma is a consequence dj and Entry 24 of , p.
34].
Lemma3let m= [, | =m(s—r)—r1, k=—m(s—

r)+sandh=mr— % 0<r <s. Here[x] denote
the largest integer less than or equal to x. Then

(i) f(q "0 = q"f(d,d",
(i) f(—q ", —0% = (-1)"q "f(—d,—qf).

For a proof of Lemma&, see P].

The main aim of this paper is to establish several modular
relations involving the Rogers-Ramanujan type functions

Suppose that ¥ r < 6. Then, by using®), (9) and (0),
we have

2¢(—g”+ V) y(q)
—f (_q21— (r—l)/27_q21—r(r—1)/2) f(1,9)

[oe]

(—1) mq(Zlfr(rfl)/2)n12+(n2+n)/2.

m,N=—co

(24)

In this representation, we make the change of indices by

setting

(7—rym+n=13M+a  and

wherea andb have values selected from the set
{0,4£1,+2,+3 +4,+5 +6}

Then

a—b

in (12—(17) which are analogous to Ramanujan’s forty and

identities and we extract some theorems in partitions from

our main results.

2 Main Results

involving the functions defined in 1@—(17). For
simplicity, for a positive integer n, we séf, := U(q"),
Vi :i=V(@"), Wh :=W(q"), Xn:= X(q"), Ya:=Y(q") and
Zn:=Z(q").

2y
We prove our main results using ideas similar to those of _ z q a+a)/ %

Watson R3] and Bressoud1]2].

Theorem 1If 1 < r < 6, then the following modular

relation holds true:

q15U6+r U7 + qlo\/6+rv7—r + q6\N6+rVV7—r + q3x6+rx7—r

L r(r—1)/2 2

fao_r—1)forr frrfy

+ qY6+rY77r + ZG+rZ77r = (22)

ProofUsing (12)—(17) and Lemm&, one may rewriteZ2)
in the form

51 (-7 ) £ (<7 )
+0"0f (—qlz*z’,—q““”) f (=g 2", —g"" 1)
P (G, O (-3 7o)
P (R, (o g )
gt (-GS, ) ()

o (et g ()

= ¢~ "2 y(q). (23)

(6+r)a+
13

It follows easily thata = b, and som=M — N andn =
(6+r)M+ (7—r)N+a, where—6 < a < 6. Thus, there

(7—r)b

—(6+1)M+(7—1)N+

is one-to-one correspondence between the set of all pairs
In this section, we present a list of modular relations ©f integers(m,n),

—oo < m,n< oo, and triples of integers
M,N,a), —0o < M,N < o0, —6 < a< 6. From @24), we
find that

2¢( 21-r(r-1)/ ()

6+r )(13M2+(2a+1)M) /2

a=—~6 —
m (_1)Nq(7fr)(13N2+(2a+l)N)/2
N=—c0

: ta)/2 6+1)(7 6+1)(6
=3 g f(_q( (T+a) g6+ —a>)

a=—6

x f (_q<7—r><7+a>, _q<7—r><6—a>)

= q'°f (—qe*’,—q””zr) f(—q"",—q® 1)
o+ ql0F (—qi2rr, - gPorn) f (—qM 2, g7 )
T (B, —gfOH) £ (g, 70 1)
G (g, PO (P, P
+af (g5, ) £ (S, e

+qf (_q48+8r’ _q30+5r) f (_q5678r7 _q3575r)
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+ o (_q54+9r7_q24+4r) f (_qes—grj_qzs—m)
Pt (_q60+10r’_q18+3r) f (_q70—10r’_q21—3r)
+qtof (_q66+11r’ _q12+2r) f (_q77711r7_ql472r)
+ g5t (_q72+12r’_q6+r) f (_q84~12r7_q77r)
+QPL (— T8 1) f (—q 1391 1)

which is equivalent toZ3) as the last term equal to zero

by (7).

Theorem 2If 1 < r < 6, then the following modular
relation holds true:

U7 20Uzr 1+ G Na7_2/Var 1+ G137 2 Wor 1
+ %72 Xor 1+ 0PYo7_2rYor 1+ Zo7-20Z2r 1

B 1 < f2(27 2r)(2r-1) £
foz-2rfar1 f(22772r)(2r71) ff(2772r)(2r71) f2
2 fgffm 2r)(2r-1)
_(r— —2r r—
e , (25)
fifif207-2n2r1)

ProofUsing (12—(17) and Lemma2, we see that3b) is
equivalent to

qsof( oRT20 P24 24r) f (g A 12)
f( qF4r o7 22r) f( 2 11)

+qlzf( g1-6r _ 270—20r) f( o 10)

+Pf (—qloB8r _243-18n) £ (g )

+q2f( qlLes-1or, qu&lGr)f( q10r 5 q16r78)

+f(_qlesz—lzr -~ 189—14r) ( 126 _ 14r—7)
_¢( (2r—1)(27- 2r))w(q2)

_ q427(r77) é(Q (q2(2rfl)(2772r)) . (26)

Now changingy to g* in (26), and then applying Lemnta
in the resulting identity, we may rewrit@®) in the form

2o {0 (el 20) 4 @) - (212 ) g ()}
= q12%f (—quHH—q“%%r) f (—qg““rq%'*“g)
+0f (—olmfl‘3r : —q118&88r) f (—qls’*s, —qss“““)
+q*8f (—q32“‘” : —q1°8‘*8°r) f (—qz‘”*lz, —q8°’*4°)

+q24f (_q432732r’_q972772r> £ (_q32r7167_q72r736)

+q8f (_q54w40r7_q86¢64r) f (_q40r7207_q64r732)

4 f (_q648—48r’_q756—56r) f (_q48r—24’_q56r—28 '

(27)
Thus we need only to establisB7). We have
¢ (_q(Zr—l)(27—2r)) 6 (q)
= f ( — q(2r71>(2772r>’ —q<2f*1)<2772r)) (a9
= S (_1)mq(2r—1)(27_2r)mz+n2. o8

mr=—co

In the above representation, we make the following change
of indices:

(2r—1)m+n=26M+a and — (27— 2r)m-+n= 26N +b,
wherea andb have values selected from the set

{0,41,42 43 44,45 +6,47,48,4+9,+10,+11 +12 13}.
Then

a—b
M—N+ 22
m= * 26

and

(27—2r)a+ (2r —
26

It follows easily thata = b, and som= M — N and

n= (27— 2r) M+ (2r —1)N +a, where—12 < a < 13.
Thus, there is one-to-one correspondence between the set
of all pairs of integergm,n), —co < m,n < oo, and triples

of integers(M,N,a), —oo < M,N < 00, —12<a <13,

From @28), we find that

é (_q(erl)(2772r)) é (q)

[ee]

% NZ (_1)M+Nq(2772r)(26M2+2aM)+(2r71)(26N2+2aN)
M,N=—00

1)b

n=(27-2r)M+(2r —1)N+

13 2
_ g f (_q(2772r)(26+2a)7 _q(2772r)(2672a))

a=—12
< f (_q(erl)(26+2a)7_q(2rfl)(2672a)) .

Changingq to —q in the above identity and then
subtracting the resulting identity from the above identity
and after some simplifications, we obta&v).

Theorem 3We have

—*U40V3 + 0*8Va0%3 — 9 WiaoZs + 0PXa0Ys — QY45

fqfqfaof
+ Zagy — fafaofizo g
f2f3fa0f60
0%8U2aVy — 4M™VoaX7 + QPWbaZ7 — QXoaY7 + YaaWy
frfafanf
— *ZodU7 = w’ (30)
faf7 124184

(@© 2016 NSP
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0®VeX11 — q*UgVi1 — QWgZy1 + Xg¥11 — G Ye Wi

fifafoof
+q'9ZgUp = 22288 (31)
fofgfi1faa
—OPWi6Zg + X16Yo — qY1eWe + °Z16Ug + 4 V16Xo
f1fafagf
— W1V = M" (32)
fafgfisfro

—0*NV32Xs + 9 W Z5 — 03Xs2Y5 + Ya s — qZ35Us

PV — f1fafaofi60 (33)
f2f5f32fg0 ’

—0PUagV1 + *NVagXa — 0P WagZy + M %XagY1 — Va4

fgf
+ZagUy = 22 (34)

fafoy
ProofUsing (10), We have

W (- @ (—q) =f (-g°°%—0%) f (—q,—®)
(-1

mr=—co

m+n~30m(2m—1)+n(2n+1)

q

(35)
In the above representation, we make the following chang
of indices:
3m+n=13M+a —10m+n=13N+Db,

where a and b have values selected from the set
{0,+1,4+2,+3,+4,+5, +6}. Then

10a+3b
m=M N+ 2L and n=10M 4 3N + 1813

It follows easily thata = b, and som=M — N andn =
10M + 3N + a, where—6 < a < 6. Thus, there is one-to-

and

one correspondence between the set of all pairs of integers

(m,n), —o < m,n < oo, and triples of integeréM,N,a),
—0 < M,N <o, —6<a<6.From@5), we find that
6

(_1)aq2a2+a

a=—6

¢ (o) ¢(-a)
|v| 26(]\/I2+20( 14-2a)M+78N2+3(11+-4a)N
M,

S (—1)? R a*taf (_ qRao+40a _ q28(F40a)

—00

a=—6

< f (q111+12a’ q45—12a)

— 5¢ ( 1, qszo) <q397 q117) i (_q407_q480)
<q51 q105) +ngf <_q807_q440) <q63 qgg)

— t5¢ (_q120’_q400> <q75 q81) +q6f (_ql60 _q360>
<q87 qag) qf (_qzoo —q320> <q99 q57)
L f <—q24°, _qzso) f (qlll, q45) -~ qsf <_q2807 —q24°)

o f <q1237 q33) +qlof <—q3207—q200) f (q135, q21)

_ q21f (_qsao’ _q160) (q147, qg) q36f (—q400, _qlzo)
< f (q1597 q—3) i (_q440’_q80) f (q171’ q—15)
+qef (_q4ao’ —q4°) (q183’ q’27)

Using (19) in (36) and then after some simplification, we
obtain

(36)

45f( q°, q480 f( ) 28f( qso’_q440)
x f(—q q27) oi5F (— 120, —q %) f (
+qf( q 360)f( — )—qf(—q ’_qszo)
X f (0, —q%) + £ (~62%,—6?) f (o, —*)

=y (—q3°) Y(-q). (37)
Now if we employ (2)—(17) and Lemma2 in the above
identity, we obtain29). The proofs of 80)—(34) follow in
a similar way.

The proof of our modular relations in Theorefis
strongly depends upon the results of Roget§] [and

Bressoud 1.2] We adopt Bressoud’s notation, except that

we useqﬂf( q") instead ofR,, and the variableg
instead of. Let gg, ") and®; g m p be defined as follows:

12n2—12n+3—p
o =gV (@) = 2 )
L (A= (@)P ) (1 (@)P )
rEL ME-1(1— (qo)Prk)

(38)

for any positive odd integep, integern, and natural
numbera, and

Popmp: = q’a,&m,p(Q)
— d i (_1)r+sq%{Pa(r+mZ%1)2+pﬁ(S+2%1)2}’
n=1r,s=—o
(39)

wherea, 3 and p are natural numbers, and is an odd
positive integer. Then we can easily obtain the following
propositions.

Proposition 1 We have

0e>% = iUy, gf%Y =RV, gi®Y =qieawy,
0% = gXe, gi*Y =Yy, oY = 7,
Theorem 4[12, Proposition 5.4]. For odd p> 1,

aBmp*Zq d f(—q

(< 2 gpn (2mmm+l)/2)>

Using Theorend, Propositionl and Lemmaé3, we obtain
the following proposition:

(@© 2016 NSP
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Proposition 2\We have

atB 7a-58 1150478
(Da7ﬁ,3,13 =2q 2% fq4 fﬁ q 156 YO,ZB +q 6 VaYg

1750+318 31a+678

—q 156 Uaxp q 16 XO’WB

—50+1153
— q 156

ZaVg+ T WO,UB>

310478

@ 43713—2C]7T fafp (q s WO,ZB q 1 XgYp

_q 156 Vaxp—f—q 156 YaWp

& ZaUﬁ) 5

asp 11m_5p 50178
Py po13=29 24 fofg|q 156 VoZg—q 156 Z4Yp

1750+1153
+q 6

—5a+1
Uorvﬁ —q 156

67a+318

1750!+67[i
+ q 156 WaXﬁ + q

UaWﬁ

156 Xauﬁ>

Ta+1153

S AVERE

67a+78

Py 51113 —ZQ_ZT fa fg <q 55" UO{Zﬁ q 6 WaYp

—5a+678
q 156 Yaxﬁ q 6 ZorWﬁ
3la+1158 115a+175ﬁ
+q7 56 XgVp—Qq T VaUp>

Corollary 1.[12, Corollary 5.5 and 5.6]. If®y g mp is
defined by 39), then

q"a,Bml :07

a+B
Do pr3=2q 2 f(—q%)f(—dP).

(40)
(41)

Theorem 5[12, Corollary 7.3]. Leta;, i, my, pi where
i = 1,2, be positive integers with yrand n both odd. If
A1 = (a1mé + B1)/p1 andA; := (am3 + B2)/ p2, and the
conditions

A1 =Ap,
a1f1 = azp,
a1my = axmp (moddy)  or  aim = —axmp (MmodAg)

Theorem 6\We have

qXaV1 — Va1 — ZaWi + YaXq — qW&Y: + qPUsZy =0,

(42)
9PV2Us — q®XoVs -+ 4ZoWk — YoX5 + Wb Ys — U, Zs = O,

(43)
U1Zs — g*N1Ug + 0% Ve — 4°Z1We + g1 Xo — Wi Yg = O,

(44)
U1Zas — GAWA Yas + "Y1 Xa5 — 0F°Z1Was + 028X Va5
—q"MUsgs =1, (45)
V1Z23 — qZ1Y23+ PWiXoz + qHUIWaz — 1Y Vag
+ % Uz =1, (46)

YsZ7 4 q"VsYy — q'UsX7 — ¢ XeWy — °ZsV7 + qu\NSU(7 =) 1
47

ProofThe proof follows using Corollarg and Theoren®
in such away thatr, Gi,my and p; (i = 1,2) are selected,
respectively, as in the following table:

ap B M pr|a B m p
1 7 13| 1 1 1
2 5 11 13| 1 10 3 1
1 9 11 13| 1 9 1 1
1 35 11 13| 1 35 1 3
1 23 9 13| 1 23 1 3
5 7 3 13| 5 7 1 3

3 Applications to the theory of partitions

For simplicity, we define

ri+.

(00%0 == (0,05 0%)w

and

(g2 135 e %) = (0 0o (02 0o - (A 00)n

wherer;j, 1 <i < kandsare positive integers ang< s.

In this section, we present a partition theoretic
interpretations of 42) and @3). First, we need the

notation of colored partitions.

ri+. ro+

Definition 1.A positive integer n has | colors if there are |
copies of n available and all of them are viewed as distinct
objects. Partitions of positive integer into parts with cd

are called “colored partitions”.

For example, if 1 is allowed to have two colors, $ay
(black), andg (green), then all the colored partitions of 4
are
4,3+1y, 34+ 1g, 24+ 2, 2+ 19+ 1g, 2+ 1p+ 1y, 2+ 15+
1y, lg—|-1g—|- 1g—|- 1g, L+ 1+ 1p+ 1y, g+ 1o+ 1p+ 1y,

hold, then 1g+1g+ 1+ 1p, Ig+ 1g+ 1g+ 1.
An important fact is that
Pay. By, = Poy,Bomp,po- 1
(@ g%
(@© 2016 NSP
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is the generating function for the number of partitions of X (P TZETSE 18T 92

n, where all the parts are congruentt¢gmods) and have
| colors. =0.

Theorem 7Let R(n) denote the number of partitions of N ngte that the six quotients in the left side of the above

into parts not congruent tat2, +11, +£13 (mod 39 jgen;ity represent the generating functions Rfn), 1 <
with parts congruent tet3, +6, +9and+18 (mod 39 | - g fespectively. Hence, it is equivalent to
having two colors. Let ##n) denote the number of  —

partitions of n into parts not congruent tol, +£13 +14 ® 3 &
(mod 39 with parts congruent ta-3, +9, +15and+18  d ZOPl(n)q“ —q ) P(ma" = P+ Y Pa(n)g”
(mod 39 having two colors. Let#n) denote the number "= n=0 n=0 n=0

of partitions of n into parts not congruent 910, +13, > no3e N
+16 (mod 39 with parts congruent tot-6, +9, +£12 —anOPS(n)q +a nZOPG(n)q
and+15 (mod 39 having two colors. Let fn) denote - -

the number of partitions of n into parts not congruent to where we sePy(0) = P»(0) = P5(0) = P4(0) = P5(0) =
+13, £14, £17 (mod 39 with parts congruent tat3,  p;(0) = 1. Equating the coefficients af' (n > 3) on both
+6, £12 and +£18 (mod 39 having two colors. Let sjdes yields the desired result.

Ps(n) denote the number of partitions of n into parts not

congruent to £5, +8, +13 (mod 39 with parts  Example IThe following table illustrates the case=7in
congruent to+3, +6, +£12 and £15 (mod 39 having  the Theoreny.

two colors. Let B(n) denote the number of partitions of n
into parts not congruent tat7, +£13, £19 (mod 39
with parts congruent to+9, +12, +15 and +18
(mod 39 having two colors. Then, for any positive

8
8

|
o

PL(6) = 10 66,5+ LA+ 1+ 1,35+ 39,39+ 31,
3 +3,3g+1+1+13+1+1+1,

integer n> 3, we have BE =2 1+ 1+4712++12+ 1+1
= 1) = Peln=3) ~ Rl + Pul) R IS e D A R
+3,4+2+1,4+1+1+13+3+1,

~Rn=1)+Rn-3)=0. 342+423+2+1+1,3+1+1+1+1,

ProofWith the help of (2—(17), (42) can be written as 2+242+1,2+24+14+1+1,

follows: 24+ 14+14+1+14+1,1414+2+21+1+141
q Py(7) = 18 760+ 1,6 +1,5+2511+1,

(A% 5% 74,85, 105,125 14% 5% 165 174195, (39) 3g+3g+1,33+3F+1,3+3+1,

3 +2+2,3g+2+23+2+1+1,

y 1 3g+2+1+1,3g+1+1+1+1,
(P 6595185, 39)2 3 1414111212424,
q° 2424+1+14+12+1+1+14+141,
- (QHAE 5% 6% 74 85,108 11, 125 165 175,19E, 39) 1+1+141+1+1+1
1 Ps(6) =15 6g,6r,4+1+1,44 2,39+ 3,35+ 3y,

3 +3,3g+2+1,3+2+1,33+1+1+1,

X
(¥ 9525585 0395 3 +1+1+1,2+2+22+2+1+1,

_ 1 24+1+1+1+11+1+14+1+1+1
(L2535 4% 55 7 8% 115 145 174 18, 19E, 39) P@) =5 43112122+ 1+1,1+1+1+1
X 57 1&31&- oW Theorem 8Let R (n) denote the number of partitions of
S ) n, where each part is a multiple & or 5 and not
n 1 congruent to+4, +5, +£22, £26, +48, +52, +56, 65
(Ol 244,55, 1.8, 9,105 116,155, 164,195 g39) (mod 13Q with parts congruent te10, +20, +40, +50
1 (mod 130 having two colors. Let #n) denote the
X (3= 6= 125 18%; (39)2 number of partitions of n, where each part is a multiple of
°°q 2 or 5 and not congruent tat8, 418, +26, +34, +44,
T (qUE2E A TE 9% 105,115,145, 165,172 185 195 39) _ +52, +55, 65 (mod 130 with parts congruent ta:20,
1 +30, 40, £50 (mod 130 having two colors. Let£n)

denote the number of partitions of n, where each partis a
multiple of2 or 5 and not congruent tet12, +14, +15,
P +26, +38 452, +64, 65 (mod 130 with parts
(L 253% A5 5% 658+ 105118 14% 165,175 39) congruent to+10, £20, £30, £60 (mod 13Q having
two colors. Let (n) denote the number of partitions of n,
where each part is a multiple &or 5 and not congruent

X 3T 6 125155 139)2
(g 1995

+
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to £16, 26, +36, £42, 45, +52, +£62, 65 (mod 130
with parts congruent ta=30, +£40, £50, £60 (mod 130
having two colors. Let 4n) denote the number of
partitions of n, where each part is a multiple®br 5 and
not congruent tot6,+25, £26, +£28, +32, +£46, +52,
+58, 65 (mod 130 with parts congruent ta:10, +30,
+50, £60 (mod 130 having two colors. Let §n)

denote the number of partitions of n, where each part is a

multiple of2 or 5 and not congruent tat2, +£24, +26,
+28 +52 +54, +55 65 (mod 13Q with parts
congruent to+10, +£20, +£40, £60 (mod 13Q having
two colors. Then, for any positive integepng, we have

P1(n—6) — Po(n—3) + P3(n—1)—Py(n) + P5(n)
~Ps(n—1)=0.

ProofUsing (12-(17) in (43) and simplifying the
resulting identity, we obtain

q6

(2 6% 8+ 12E 14+ 155 161 18+ 24+ 25+ 281 30+ 325, 4130) |

1
X (34E 355 361 385 42E 44T 45+ 46E 54+ (130) |

1
X
(q55:l:758j:760:t762~t764j: : (:1130)oo (q10i720:t740:t750:t : q130)go

q
(q2i74:i:,5j:,6i710:t7121:714j:,15:!:,16:t,2&t,24:i:,25:t,28:t; ql30)’Do

1
X (Q32E 35+ 361 38+ 42E 45T 46+ 4BL 54+, (130)

1
X
(q56:l:758j:760:t762t764j: : (:1130)oo (q20i730:t740:t750:t : (:1130)5°
q

(24455 65 8T 16+ 181 22E 24+ 25+ 28% 32+ 34+, 4130) |
o 1

(35+ 36= 40k 42 44+ 45+ 46+ 48% 50+ (130) |
o 1

(54 55+ 56+ 58+ 62 4130)  (q10%,20%.30+ 60+ 4130)2

1
(Q2F 4% 55 65 8 10+ 125 T4% 15+ 18+ 20£ 22+ 24+, 4130) |

1
X (q25:t728j:732t734j:735:t,38i,44:t,46i,48i; qlSO)’Do
1
X
(q54j:755:t756:t758j:764j: : (:1130)oo (q30:l:740:t750:l:760:t : q130)go

1
(Q2F 4% 5+ BE 125 14+ 155 16+ 18+ 205 22+ 24% 34+ (130)

1
X (q35:l:736:t736:t738j:740:l:,4&,44:&,45:&,4&:; ql30)’Do
1
X
(q54j:755:t756:t7621:764j: : (:1130)oo (q10i730:t750:t760:l: : ql30)go
q

(5% 65 8E 12514 T5E 16+ 18% 225 255 305 32%, g130)

3

+

+

1
X (q34j:735:t736:t738j:742~t744j:,45i,46i,48i; (:1130)oo

1
X
(0% 56+ 58E 625 64+, 4130) _ (10%.20£ 40 60+ 130)2

=0.

Note that the six quotients in the left side of the above
identity represent the generating functionsfgn) where
1 <k < 6 respectively. Hence, it is equivalent to

0 0

a®y Puma"-a® 5 Pa(m)a+q f Ps(n)a”— 3 Pa(n)q"
n=0 n=0 n=0

+z%mwuq§%ww:a
n=0
where we seP;(0) = P»(0) = P3(0) = P4(0) = B5(0) =

Ps(0) = 1. Equating the coefficients af' (
sides yields the desired result.

=)
(2]
S~—
o
=)
o
o
~—+
>

Example 2The following table illustrates the case= 15
in the Theoren8.

P(8) =3
P,(11) =3
P(13) =4
Py(14) = 14
Py (14) = 12
Ps(13) =2

4 Conclusions

In this paper, we have used the Watson’s method and
Bresssoud method to establish several modular relations
for the Rogers-Ramanujan type functions of order
thirteen which are analogues to Ramanujan’s forty
identities for Rogers- Ramanujan functions.Almost all of
our modular relations yield theorems in the theory of
partitions.There is a need to establish a systematic way to
establish modular relations for Rogers-Ramanujan type
functions of different orders.
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