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Abstract: In this paper, a new bivariate exponentiated modified Weibull extension distribution (BEMWE) is introduced. This model
is of Marshall-Olkin type. The marginals of the new bivariate distribution have exponentiated modified Weibull extension distribution
which proposed by Sarhan et al.[1]. The joint probability density function and the joint cumulative distribution function are given in
closed forms. Several properties of this distribution havebeen discussed. The maximum likelihood estimators of the parameters are
derived. One real data set is analyzed using the new bivariate distribution, which shows that the new model can be used quite effectively
in fitting and analyzing real lifetime data than the bivariate generalized Gompertz distribution (BGG) model.

Keywords: Joint probability density function, Conditional probability density function, Maximum likelihood estimators, Fisher
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1 Introduction

Recently, Sarhan et al. [1] has defined a new four-parameter distribution referred to as exponentiated modified Weibull
extension (EMWE) distribution. Sarhan et al. [1] defined the (EMWE) distribution by exponentiating the new modified
Weibull extension (MWE) distribution which discussed by Xie et al. [2] as was done for the exponentiated weibull (EW)
distribution by Mudholkar et al. [3]. They observed that exponential distribution, generalized exponential distribution
[4], Gompertz distribution [5], generalized Gompertz (GG) distribution [6], exponentiated Weibull (EW) distribution [7],
Weibull extension model of Chen [8], modified Weibull extension (MWE) distribution [9] and etc distributions can be
obtained as special cases of the (EMWE) distribution.

The objective of this paper is to provide a new bivariate distribution, whose marginals are (EMWE) distributions which
referred to as bivariate exponentiated modified Weibull extension (BEMWE) distribution. It is obtained using a method
similar to that used to obtain Marshall-Olkin bivariate exponential model Marshall and Olkin [10,11,12,13].

The paper is organized as follows. Section 2 presents the shock model yielding the (BEMWE) distribution. Also, the
joint cumulative distribution function, the joint probability density function, the marginal probability density functions
and the conditional probability density functions of (BEMWE) distribution are derived in Section 2. In Section 3 sum
reliability studies are obtained. Section 4 presents the the marginal expectation of the (BEMWE) distribution. Section
5 obtains the parameters estimation using MLE. In section 6 anumerical results are obtained using real data. Finally, a
conclusion for the results is given in Section 7.

2 Bivariate exponentiated modified Weibull extension distribution

In this section we introduce the BEMWE distribution using a similar method to that which was used by Marshall and
Olkin [10]. We start with the joint cumulative function of the proposed bivariate distribution and so used it to derive
the corresponding joint probability density function. Finally The marginal probability density functions and conditional
probability density functions of this distribution are also derived. Let X be a random variable has univariate EMWE
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distribution with parametersγ,α,β ,λ > 0, then the corresponding cumulative distribution function (CDF) is given by

F(x) =

[

1−e−
λ
α (e(αx)β −1)

]γ
, x≥ 0, (1)

and the probability density function (PDF) takes the following form

f (x) = γλ βe(αx)β
(αx)β−1e−

λ
α (e(αx)β −1)

[

1−e−
λ
α (e(αx)β −1)

]γ−1

, x≥ 0. (2)

2.1 Joint cumulative distribution function

Suppose thatUi (i = 1,2,3) are three independent random variables such thatUi ∼EMWE (γi ,α,β ,λ ). DefineX1 =
max{U1,U3} andX2 = max{U2,U3}. Then, the bivariate vector(X1,X2) has a bivariate exponentiated modified Weibull
extension distribution, with parameters(γ1,γ2,γ3,α,β ,λ ). Let us denote it by BEMWE(γ1,γ2,γ3,α,β ,λ ). The following
interpretation can be provided for the BEMWE model.

Shock model:Assum thate there exists a three independent sources of shocks. Suppose these shocks are affecting a
system with two components. It is assumed that the shock fromsource 1 reaches the system and destroys component 1
immediately, the shock from source 2 reaches the system and destroys component 2 immediately, while if the shock from
source 3 hits the system it destroys both the components immediately. LetUi denote the inter-arrival times, between the
shocks in sourcei, i = 1,2,3, which follow the distribution EMWE. IfX1, X2 denote the survival times of the components,
then the bivariate vector(X1,X2) follows the BEMWE model.

We now study the joint cumulative distribution function of the bivariate random vector(X1,X2) in the following
lemma.

Lemma 2.1. The joint CDF of(X1,X2) is given by

FBEMWE(x1,x2) =

[

1−e−
λ
α (e(αx1)

β
−1)
]γ1
[

1−e−
λ
α (e(αx2)

β
−1)
]γ2
[

1−e−
λ
α (e(αz)β −1)

]γ3

, (3)

wherez= min(x1,x2) .

proof: Since the joint CDF of the random variablesX1 andX2 is defined as

F(x1,x2) = P(X1 ≤ x1,X2 ≤ x2)

= P(max{U1,U3} ≤ x1,max{U2,U3} ≤ x2)

= P(U1 ≤ x1,U2 ≤ x2,U3 ≤ min(x1,x2)) .

As the random variablesUi (i = 1,2,3) are mutually independent, we directly obtain

FBEMWE(x1,x2) = P(U1 ≤ x1)P(U2 ≤ x2)P(U3 ≤ min(x1,x2))

= FEMWE(x1;γ1,α,β ,λ )FEMW E(x2;γ2,α,β ,λ )FEMW E(z;γ3,α,β ,λ ). (4)

Substituting from (1) into (4), we obtain (3), which completes the proof of the lemma 2.1.

2.2 Joint probability density function

The following theorem gives the joint pdf of theX1 andX2 which is the joint pdf of BEMWE(γ1,γ2,γ3,α,β ,λ ).
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Theorem 2.1. If the joint CDF ofX1 andX2 is as in (3), then the joint pdf ofX1 andX2 takes the form

fBEMW E(x1,x2) =







f1(x1,x2) if x1 < x2
f2(x1,x2) if x2 < x1
f0(x,x) if x1 = x2 = x

(5)

where

f1(x1,x2) = fEMW E(x2;γ2,α,β ,λ ) fEMW E(x1;γ1+ γ3,α,β ,λ )

= γ2 (γ1+γ3)λ 2β 2e(αx2)
β
(αx2)

β−1e−
λ
α (e(αx2)

β
−1)
[

1−e−
λ
α (e(αx2)

β
−1)
]γ2−1

×e(αx1)
β
(αx1)

β−1e−
λ
α (e(αx1)

β
−1)
[

1−e−
λ
α (e(αx1)

β
−1)
]γ1+γ3−1

, (6)

f2(x1,x2) = fEMW E(x1;γ1,α,β ,λ ) fEMW E(x2;γ2+ γ3,α,β ,λ )

= γ1 (γ2+γ3)λ 2β 2e(αx1)
β
(αx1)

β−1e−
λ
α (e(αx1)

β
−1)
[

1−e−
λ
α (e(αx1)

β
−1)
]γ1−1

×e(αx2)
β
(αx2)

β−1e−
λ
α (e(αx2)

β
−1)
[

1−e−
λ
α (e(αx2)

β
−1)
]γ2+γ3−1

(7)

and

f3(x,x) =
γ3

γ1+ γ2+ γ3
fEMW E(x2;γ1+ γ2+ γ3,α,β ,λ )

= γ3λ βe(αx)β
(αx)β−1e−

λ
α (e(αx)β −1)

[

1−e−
λ
α (e(αx)β −1)

]γ1+γ2+γ3−1

. (8)

Proof: Let us first assume thatx1 < x2. Then, the expression forf1(x1,x2) can be simply obtained by differentiating the
joint CDF FBEMWE(x1,x2) given in (3) with respect tox1 andx2. Similarly, we find the expression off2(x1,x2) when
x2 < x1. But f3(x,x) can not be derived in a similar method. For this reason, we usethe following identity to derive
f3(x,x).

∫ ∞

0

∫ x2

0
f1(x1,x2)dx1dx2+

∫ ∞

0

∫ x1

0
f2(x1,x2)dx2dx1+

∫ ∞

0
f3(x,x)dx= 1. (9)

Let

I1 =
∫ ∞

0

∫ x2

0
f1(x1,x2)dx1dx2 and I2 =

∫ ∞

0

∫ x1

0
f2(x1,x2)dx2dx1.

One can find that

I1 =
∫ ∞

0
γ2λ βe(αx2)

β
(αx2)

β−1e−
λ
α (e(αx2)

β
−1)
[

1−e−
λ
α (e(αx2)

β
−1)
]γ1+γ2+γ3−1

dx2 (10)

and

I2 =
∫ ∞

0
γ1λ βe(αx1)

β
(αx1)

β−1e−
λ
α (e(αx1)

β
−1)
[

1−e−
λ
α (eαx1)

β
−1)
]γ1+γ2+γ3−1

dx1. (11)

Substituting from (10) and (11) into (9) we obtain
∫ ∞

0
f3(x,x)dx = 1− I1− I2

=

∫ ∞

0
(γ1+γ2+γ3)λ βe(αx)β

(αx)β−1e−
λ
α (e(αx)β −1)

[

1−e−
λ
α (e(αx)β −1)

]γ1+γ2+γ3−1

dx

−

∫ ∞

0
γ2λ βe(αx)β

(αx)β−1e−
λ
α (e(αx)β −1)

[

1−e−
λ
α (e(αx)β −1)

]γ1+γ2+γ3−1

dx

−
∫ ∞

0
γ1λ βe(αx)β

(αx)β−1e−
λ
α (e(αx)β −1)

[

1−e−
λ
α (e(αx)β −1)

]γ1+γ2+γ3−1

dx.
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Thus,

f3(x,x) = γ3λ βe(αx)β
(αx)β−1e−

λ
α (e(αx)β −1)

[

1−e−
λ
α (e(αx)β −1)

]γ1+γ2+γ3−1

,

which completes the proof.

(a) α = β = λ = 1 andγ1 = γ2 = γ3 = 5. (b) α = β = λ = 1 andγ1 = γ2 = γ3 = 2.

(c) α = 2,β = λ = 0.5 andγ1 = γ2 = γ3 = 3. (d) α = 2,β = λ = 0.5 andγ1 = γ2 = γ3 = 1.

Fig. 1: A plot of the joint PDF of BEMWE(γ1,γ2,γ3,α,β ,λ ) given in (5), for different values of(γ1,γ2,γ3,α,β ,λ ).

From Fig. 1. We note that, the joint PDF of BEMWE can take different shapes depending on the values of its
parameters.
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2.3 Marginal probability density functions

The following theorem gives the marginal probability density functions ofX1 andX2.

Theorem 2.2. The marginal probability density functions ofXi (i = 1,2) is given by

fXi (xi) = fEMWE(xi ;γi + γ3,α,β ,λ ), xi > 0, i = 1,2

= (γi + γ3)λ βe(αxi)
β
(αxi)

β−1e−
λ
α (e(αxi )

β
−1)
[

1−e−
λ
α (e(αxi )

β
−1)
](γi+γ3)−1

. (12)

Proof: The marginal cumulative distribution function forXi is

F(xi) = P(Xi ≤ xi) = P(max{Ui,U3} ≤ xi) = P(Ui ≤ xi ,U3 ≤ xi) .

As the random variablesUi (i = 1,2) andU3 are mutually independent, we directly obtain

F(xi) = P(Ui ≤ xi)P(U3 ≤ xi)

=

[

1−e−
λ
α (e(αxi )

β
−1)
]γi
[

1−e−
λ
α (e(αxi )

β
−1)
]γ3

=

[

1−e−
λ
α (e(αxi )

β
−1)
]γi+γ3

= FEMWE(xi ;γi + γ3,α,β ,λ ). (13)

From which we readily derive the pdf ofXi , f (xi) =
∂

∂xi
F(xi), as in (12).

2.4 Conditional probability density functions

The following theorem gives the conditional probability density functions of(X1,X2).

Theorem 2.3. The conditional probability density function ofXi givenXj = x j , (i, j = 1,2, i 6= j) is given by

fXi |Xj
(xi | x j) =















f (1)Xi |Xj
(xi | x j) if 0 < xi < x j

f (2)Xi |Xj
(xi | x j) if 0 < x j < xi

f (3)Xi |Xj
(xi | x j) if xi = x j > 0

where

f (1)Xi |Xj
(xi | x j) =

γ j(γi + γ3)λ βe(αxi)
β
(αxi)

β−1e−
λ
α (e(αxi )

β
−1)

[

1−e−
λ
α (e(αxi )

β
−1)

]γi+γ3−1

(γ j + γ3)

[

1−e−
λ
α (e(αxj )

β
−1)

]γi+γ3−1 ,

f (2)Xi |Xj
(xi | x j) = γiλ βe(αxi)

β
(αxi)

β−1e−
λ
α (e(αxi )

β
−1)
[

1−e−
λ
α (e(αxi )

β
−1)
]γi−1

and

f (3)Xi |Xj
(xi | x j) =

γ3

γi + γ3

[

1−e−
λ
α (e(αxi )

β
−1)
]γi

.

Proof: The proof follows immediately by substituting the joint probability density function of(X1,X2) given in (6), (7)
and (8) and the marginal probability density function givenin (12), using the relation

fXi |Xj
(xi | x j) =

fXi ,Xj (xi ,x j)

fXi (xi)
, (i = 1,2).
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3 Reliability studies

In this section, we present the joint survival function of(X1,X2), the CDF of the random variableY = max{X1,X2} and
the CDF of the random variableW = min{X1,X2}.

3.1 Joint survival function

In this subsection, we derive the joint survival function of(X1,X2) in a compact form.

Theorem 3.1. The joint survival function of(X1,X2) is given by

SX1,X2(x1,x2) =







S1(x1,x2) if x1 < x2
S2(x1,x2) if x2 < x1
S0(x,x) if x1 = x2 = x

(14)

where

S1(x1,x2) = 1−

[

1−e−
λ
α (e(αx2)

β
−1)
]γ2+γ3

−

[

1−e−
λ
α (e(αx1)

β
−1)
]γ1+γ3

(

1−

[

1−e−
λ
α (e(αx2)

β
−1)
]γ2
)

,

S2(x1,x2) = 1−

[

1−e−
λ
α (e(αx1)

β
−1)
]γ1+γ3

−

[

1−e−
λ
α (e(αx2)

β
−1)
]γ2+γ3

(

1−

[

1−e−
λ
α (e(αx1)

β
−1)
]γ1
)

and

S0(x,x) = 1−

[

1−e−
λ
α (e(αx)β −1)

]γ3
(

[

1−e−
λ
α (e(αx)β −1)

]γ1

+

[

1−e−
λ
α (e(αx)β −1)

]γ2

−

[

1−e−
λ
α (e(αx)β −1)

]γ1+γ2
)

.

Proof: The joint survival function of(X1,X2) can be obtained from the following relation

SX1,X2(x1,x2) = 1−FX1(x1)−FX2(x2)+FX1,X2(x1,x2). (15)

Substituting from (3) and (13) in (15), we get

SX1,X2(x1,x2) = 1−

[

1−e−
λ
α (e(αx1)

β
−1)
]γ1+γ3

−

[

1−e−
λ
α (e(αx2)

β
−1)
]γ2+γ3

+

[

1−e−
λ
α (e(αx1)

β
−1)
]γ1
[

1−e−
λ
α (e(αx2)

β
−1)
]γ2
[

1−e−
λ
α (e(αz)β −1)

]γ3

, (16)

wherez= min(x1,x2) . From (16) we can be obtained simply the expressions ofS1(x1,x2), S2(x1,x2) andS0(x1,x2) for
x1 < x2 , x2 < x1 andx1 = x2 = x respectively, which completes the proof.

Comment 3.1. Basu [14] defined the bivariate failure rate [15] function h(x1,x2) for the random vector(X1,X2) as the
following relation

hX1,X2(x1,x2) =
fX1,X2(x1,x2)

SX1,X2(x1,x2)
. (17)

We can obtained the bivariate failure rate functionh(x1,x2) for the random vector(X1,X2) by substituting from (5) and
(14) in (17).

Lemma 3.1. The CDF of the random variableY = max{X1,X2} is given as

FY(y) =

[

1−e−
λ
α (e(αy)β −1)

]γ1+γ2+γ3

. (18)
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Proof: Since

FY(y) = P(Y ≤ y) = P(max{X1,X2} ≤ y) = P(X1 ≤ y,X2 ≤ y)

= P(max{U1,U3} ≤ y,max{U2,U3} ≤ y) = P(U1 ≤ y,U2 ≤ y,U3 ≤ y) ,

where the random variablesUi (i = 1,2,3) are mutually independent, we directly obtain

FY(y) = P(U1 ≤ y)P(U2 ≤ y)P(U3 ≤ y)

= FEMWE(y;γ1,α,β ,λ )FEMW E(y;γ2,α,β ,λ )FEMW E(y;γ3,α,β ,λ ). (19)

Substituting from (1) in (19), we get (18) which completes the proof of the lemma 3.1.

Comment 3.2. From lemma 3.1. we can say that, ifX1 and X2 are independent EMWE random variables then
max{X1,X2} is also EMWE random variable.

Lemma 3.2. The CDF of the random variableW = min{X1,X2} is given as

FW(w) =

[

1−e−
λ
α (e(αw)β −1)

]γ1

+

[

1−e−
λ
α (e(αw)β −1)

]γ2

−

[

1−e−
λ
α (e(αw)β −1)

]γ1+γ2+γ3

. (20)

Proof: Since

FW(w) = P(W ≤ w) = P(min{X1,X2} ≤ w) = 1−P(min{X1,X2}> w)

= 1−P(X1 > w,X2 > w) = 1−S(w,w). (21)

Substituting from (14) in (21), we get

FW(w) = FX1(w)+FX2(w)−FX1,X2(w,w). (22)

Substituting from (3) and (13) in (22), we get (20) which completes the proof of the lemma 3.2.

4 The marginal expectation

In this section, we derive the marginal expectation ofXi (i = 1,2). The following theorem gives therth moments of
Xi (i = 1,2) as infinite series expansion.

Theorem 3.1. Therth moment of Xi (i = 1,2) is given by:

E(Xr
i ) =

(γi + γ3)λ
α1−β

∞

∑
j=0

∞

∑
k=0

(

(γi + γ3)−1
j

)

(−1) j+k λ k( j +1)k

αk+β+r(k+1)β+rk!
e

λ( j+1)
α Γ (

r
β
+1). (23)

Proof: We will start with the known definition of therth moment of the random variablesXi with pdf f (xi) given by

E(Xr
i ) =

∫ ∞

0
xr

i fXi (xi)dxi .

Substituting forfXi (xi) from (12), we get

E(Xr
i ) =

(γi + γ3)λ β
α1−β

∫ ∞

0
xr+β−1

i e(αxi)
β
e−

λ
α (e(αxi )

β
−1)
[

1−e−
λ
α (e(αxi )

β
−1)
](γi+γ3)−1

dxi . (24)

Since 0< e−
λ
α (e(αxi )

β
−1)

< 1 for x> 0, then by using the binomial series expansion of

[

1−e−
λ
α (e(αxi )

β
−1)

](γi+γ3)−1

given

by
[

1−e−
λ
α (e(αxi )

β
−1)
](γi+γ3)−1

=
∞

∑
j=0

(

(γi + γ3)−1
j

)

(−1) j e−
jλ
α (e(αxi )

β
−1)

. (25)
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Substituting from (25) into (24), we get

E(Xr
i ) =

(γi + γ3)λ β
α1−β

∞

∑
j=0

(

(γi + γ3)−1
j

)

(−1) j e
λ( j+1)

α

∫ ∞

0
xr+β−1

i e(αxi)
β
e−

λ( j+1)
α e(αxi )

β
dxi .

Using the series expansion ofe−
λ( j+1)

α e(αxi )
β
, one gets

E(Xr
i ) =

(γi + γ3)λ β
α1−β

∞

∑
j=0

∞

∑
k=0

(

(γi + γ3)−1
j

)

(−1) j+k λ k( j +1)k

αkk!
e

λ( j+1)
α

∫ ∞

0
xr+β−1

i e(k+1)(αxi)
β
dxi.

Let y= (k+1)(αxi)
β in the above integral, then we can get

E(Xr
i ) =

(γi + γ3)λ
α1−β

∞

∑
j=0

∞

∑
k=0

(

(γi + γ3)−1
j

)

(−1) j+k λ k( j +1)k

αk+β+r(k+1)β+rk!
e

λ( j+1)
α

∫ ∞

0
y

r
β eydy. (26)

Since,Γ (z) = xz
∫ ∞

0
exttz−1dt , z> 0, x> 0, then

∫ ∞

0
y

r
β eydy= Γ (

r
β
+1). (27)

Substituting from (27) into (26), we get (23). This completes the proof.

5 Maximum liklihood estimators

In this section, we use the method of maximum likelihood to estimate the unknown parameters of the BEMWE
distribution. Consider constant values to the parametersα andβ so, we want to estimate the other parametersγ1,γ2,γ3and
λ . Suppose that we have a sample of size n ,of the form{(x11,x21), (x12,x22),..., (x1n,x2n)} from BEMWE distribution.
We use the following notation

I1 = {x1i < x2i}, I2 = {x1i > x2i}, I3 = {x1i = x2i = xi}, I = I1 ∪ I2 ∪ I3, |I1| = n1, |I2| = n2, |I3| = n3, and
n1+n2+n3 = n.

Based on the observations, the likelihood function of the sample of size n given by:

l(γ1,γ2,γ3,α,β ,λ ) =
n1

∏
i=1

f1(x1i ,x2i)
n2

∏
i=1

f2(x1i ,x2i)
n3

∏
i=1

f3(xi ,x).

The log-likelihood function can be written as

L(γ1,γ2,γ3,α,β ,λ ) = n1 ln
(

γ2(γ1+ γ3)λ 2β 2
)

+
n1

∑
i=1

(αx1i)
β−

λ
α

n1

∑
i=1

(e(αx1i)
β
−1)−

λ
α

n1

∑
i=1

(e(αx2i)
β
−1)

+(γ2−1)
n1

∑
i=1

ln(1−e−
λ
α (e(αx2i )

β
−1))+(β−1)

n1

∑
i=1

ln(α2x1x2)+(γ1+γ3−1)
n1

∑
i=1

ln(1−e−
λ
α (e(αx1i )

β
−1))

+
n1

∑
i=1

(αx2i)
β+n2 ln

(

γ1(γ2+γ3)λ 2β 2
)

+
n2

∑
i=1

(αx1i)
β−

λ
α

n2

∑
i=1

(e(αx1i)
β
−1)+

n2

∑
i=1

(αx2i)
β

−
λ
α

n2

∑
i=1

(e(αx2i)
β
−1)+(γ1−1)

n2

∑
i=1

ln(1−e−
λ
α (e(αx1i )

β
−1))+(γ2+γ3−1)

n2

∑
i=1

ln(1−e−
λ
α (e(αx2i )

β
−1))

+(β −1)
n2

∑
i=1

ln(α2x1x2)+n3 ln(γ3λβ )−
λ
α

n3

∑
i=1

(e(αxi)
β
−1)+

n3

∑
i=1

(αxi)
β+(β −1)

n3

∑
i=1

ln(αxi)

+(γ1+γ2+γ3−1)
n3

∑
i=1

ln(1−e−
λ
α (e(αxi )

β
−1)). (28)

Computing the first partial derivatives of (28) with respectto γ1,γ2 andγ3 and setting the results equal zeros, we get the
likelihood equations as in the following form

∂L
∂γ1

=
n1

γ1+γ3
+

n1

∑
i=1

ln(1−e−
λ
α (e(αx1i )

β
−1))+

n2

γ1
+

n2

∑
i=1

ln(1−e−
λ
α (e(αx1i )

β
−1))+

n3

∑
i=1

ln(1−e−
λ
α (e(αxi )

β
−1)), (29)
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∂L
∂γ2

=
n1

γ2
+

n1

∑
i=1

ln(1−e−
λ
α (e(αx2i )

β
−1))+

n2

γ2+γ3
+

n2

∑
i=1

ln(1−e−
λ
α (e(αx2i )

β
−1))+

n3

∑
i=1

ln(1−e−
λ
α (e(αxi )

β
−1)), (30)

∂L
∂γ3

=
n1

γ1+ γ3
+

n1

∑
i=1

ln(1−e−
λ
α (e(αx1i )

β
−1))+

n2

γ2+γ3
+

n2

∑
i=1

ln(1−e−
λ
α (e(αx2i )

β
−1))+

n3

γ3
+

n3

∑
i=1

ln(1−e−
λ
α (e(αxi )

β
−1)) (31)

and

∂L
∂λ

=
2n1

λ
−

1
α

n1

∑
i=1

(e(αx1i)
β
−1)−

1
α

n1

∑
i=1

(e(αx2i)
β
−1)+

γ2−1
α

n1

∑
i=1

(e(αx2i)
β
−1)

e
λ
α (e(αx2i )

β
−1)−1

+
γ1+γ3−1

α

n1

∑
i=1

(e(αx1i)
β
−1)

e
λ
α (e(αx1i )

β
−1)−1

+
2n2

λ
−

1
α

n2

∑
i=1

(e(αx1i)
β
−1)−

1
α

n2

∑
i=1

(e(αx2i)
β
−1)+

γ1−1
α

n2

∑
i=1

(e(αx1i)
β
−1)

e
λ
α (e(αx1i )

β
−1)−1

+
γ2+γ3−1

α

n2

∑
i=1

(e(αx2i)
β
−1)

e
λ
α (e(αx2i )

β
−1)−1

+
n3

λ

−
1
α

n3

∑
i=1

(e(αxi)
β
−1)+

γ1+γ2+γ3−1
α

n3

∑
i=1

(e(αxi)
β
−1)

e
λ
α (e(αxi )

β
−1)−1

. (32)

To get the MLEs of the parametersγ1,γ2,γ3 andλ , we have to solve the above system of four non-linear equations. The
solution of equations (29), (30) ,(31)and (32) are not easy to solve, so numerical technique is needed to get the MLEs.

5.1 Asymptotic confidence bounds

In this subsection we consider the approximate confidence intervals of the parametersγ1,γ2,γ3 andλ by using variance
covariance matrixI−1

0 see Lawless [16], whereI−1
0 is the inverse of the observed information matrix

I−1
0 =−















∂ 2L
∂γ2

1

∂ 2L
∂γ1∂γ2

∂ 2L
∂γ1∂γ3

∂ 2L
∂γ1∂λ

∂ 2L
∂γ2∂γ1

∂ 2L
∂γ2

2

∂ 2L
∂γ2∂γ3

∂ 2L
∂γ2∂λ

∂ 2L
∂γ3∂γ1

∂ 2L
∂γ3∂γ2

∂ 2L
∂γ2

3

∂ 2L
∂γ3∂λ

∂ 2L
∂λ ∂γ1

∂ 2L
∂λ ∂γ2

∂ 2L
∂λ ∂γ3

∂ 2L
∂λ 2















−1

=

















Var(
∧
γ1) Cov(

∧
γ1,γ2) Cov(

∧
γ1,

∧
γ3) Cov(

∧
γ1,

∧

λ )

Cov(
∧
γ2,

∧
γ1) Var(

∧
γ2) Cov(

∧
γ2,

∧
γ3) Cov(

∧
γ2,

∧

λ )

Cov(
∧
γ3,

∧
γ1) Cov(

∧
γ3,

∧
γ2) Var(

∧
γ3) Cov(

∧
γ3,

∧

λ )

Cov(
∧

λ ,
∧
γ1) Cov(

∧

λ ,
∧
γ2) Cov(

∧

λ ,
∧
γ3) Var(

∧

λ)

















. (33)

The derivatives inI−1
0 are given as follows

∂ 2L

∂γ2
1

= −
n1

(γ1+γ3)
2−

n2

γ1
2 ,

∂ 2L
∂γ1∂γ3

=−
n1

(γ1+γ3)
2 ,

∂ 2L

∂γ2
2

=−
n1

γ2
2

−
n2

(γ2+γ3)
2 ,

∂ 2L
∂γ2∂γ3

= −
n2

(γ2+γ3)
2 ,

∂ 2L

∂γ2
3

=−
n1

(γ1+γ3)
2−

n2

(γ2+γ3)
2 −

n3

γ2
3

,
∂ 2L

∂γ1∂γ2
= 0,

∂ 2L
∂λ ∂γ1

=
1
α

[

n1

∑
i=1

e(αx1i)
β
−1

e
λ
α (e(αx1i )

β
−1)−1

+
n2

∑
i=1

e(αx1i)
β
−1

e
λ
α (e(αx1i )

β
−1)−1

+
n3

∑
i=1

e(αxi)
β
−1

e
λ
α (e(αxi )

β
−1)−1

]

,

∂ 2L
∂λ ∂γ2

=
1
α

[

n1

∑
i=1

e(αx2i)
β
−1

e
λ
α (e(αx2i )

β
−1)−1

+
n2

∑
i=1

e(αx2i)
β
−1

e
λ
α (e(αx2i )

β
−1)−1

+
n3

∑
i=1

e(αxi)
β
−1

e
λ
α (e(αxi )

β
−1)−1

]

,

∂ 2L
∂λ ∂γ3

=
1
α

[

n1

∑
i=1

e(αx1i)
β
−1

e
λ
α (e(αx1i )

β
−1)−1

+
n2

∑
i=1

e(αx2i)
β
−1

e
λ
α (e(αx2i )

β
−1)−1

+
n3

∑
i=1

e(αxi)
β
−1

e
λ
α (e(αxi )

β
−1)−1

]

,
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Table. 1.American Football League (NFL) data
X1 X2 X1 X2 X1 X2 X1 X2

2.05 3.98 8.53 14.57 2.90 2.90 1.38 1.38
9.05 9.05 31.13 49.88 7.02 7.02 10.53 10.53
0.85 0.85 14.58 20.57 6.42 6.42 12.13 12.13
3.43 3.43 5.78 25.98 8.98 8.98 14.58 14.58
7.78 7.78 13.80 49.75 10.15 10.15 11.82 11.82
10.57 14.28 7.25 7.25 8.87 8.87 5.52 11.27
7.05 7.05 4.25 4.25 10.40 10.25 19.65 10.70
2.58 2.58 1.65 1.65 2.98 2.98 17.83 17.83
7.23 9.68 6.42 15.08 3.88 6.43 10.85 38.07
6.85 34.58 4.22 9.48 0.75 0.75
32.45 42.35 15.53 15.53 11.63 17.37

and

∂ 2L

∂λ 2 = −
2n1

λ 2 −
γ1+γ3−1

α2

n1

∑
i=1

e
λ
α (e(αx1i )

β
−1)
(

e(αx1i)
β
−1
)2

(

e
λ
α (e(αx1i )

β
−1)−1

)2 −
γ2−1
α2

n1

∑
i=1

e
λ
α (e(αx2i )

β
−1)
(

e(αx2i)
β
−1
)2

(

e
λ
α (e(αx2i )

β
−1)−1

)2 −
2n2

λ 2 −
γ2+γ3−1

α2 ×

n2

∑
i=1

e
λ
α (e(αx2i )

β
−1)
(

e(αx2i)
β
−1
)2

(

e
λ
α (e(αx2i )

β
−1)−1

)2 −
γ1−1
α2

n2

∑
i=1

e
λ
α (e(αx1i )

β
−1)
(

e(αx1i)
β
−1
)2

(

e
λ
α (e(αx1i )

β
−1)−1

)2

−
n3

λ 2−

(

γ1+γ2+γ3−1
α2

) n3

∑
i=1

e
λ
α (e(αxi )

β
−1)
(

e(αxi)
β
−1
)2

(

e
λ
α (e(αxi )

β
−1)−1

)2 .

We can derive the(1− δ )100% confidence intervals of the parametersγ1,γ2, γ3 andλ by using variance covariance
matrix as in the following forms

∧
γi ±Zδ

2

√

Var(
∧
γi) , i = 1,2,3 and

∧

λ ±Zδ
2

√

Var(
∧

λ).

whereZδ
2

is the upper (δ2 )th percentile of the standard normal distribution.

6 Data analysis

In this section we present the analysis of a bivariate real data set to illustrate that the BEMWE distribution can be used
as a good lifetime model, comparing with the BGG distribution [17]. We will use the log-likeihood values(L), Akaike
information criterion (AIC), correct Akaike information criterion (CAIC) and Bayesian information criterion (BIC) test
statistic. The data set represents the American Football (National Football League) League data and it is obtained fromthe
matches played on three consecutive weekends in 1986. The data were first published in ‘Washington Post’ and they are
also available in Csorgo and Welsh [18]. It is a bivariate data set, and the variablesX1 andX2 are as follows:X1 represents
the ‘game time’ to the first points scored by kicking the ball between goal posts, andX2 represents the ‘game time’ to the
first points scored by moving the ball into the end zone. Thesetimes are of interest to a casual spectator who wants to
know how long one has to wait to watch a touchdown or to a spectator who is interested only at the beginning stages of a
game.

The data (scoring times in minutes and seconds) are represented in Table. 1. Here also all the data points are divided
by 100 just for computational purposes. The variables have the following structure: (i)X1 < X2 means that the first score
is a field goal, (ii)X1 > X2, means the first score is an unconverted touchdown or safety,(iii) X1 = X2 means the first score
is a converted touchdown.
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Table. 2.The MLEs and the values of L, AIC, CAIC and BIC.
Model MLEs L AIC CAIC BIC

BGG
∧
γ1= 0.024,

∧
γ2= 0.150, −260.5 529.0 530.03 268.07

(
∧
γ1,

∧
γ2,

∧
γ3,

∧

λ ,0.1)
∧
γ3= 0.310,

∧

λ= 0.0044

BEMWE
∧
γ1= 0.212,

∧
γ2= 1.315, −239.86 487.36 488.39 247.25

(
∧
γ1,

∧
γ2,

∧
γ3,

∧

λ ,0.1,0.42)
∧
γ3= 2.645,

∧

λ= 0.096

Consider a constant value to the parametersα andβ which take the values 0.1 and 0.42 respectively. In Table. 2.We
present the MLEs of the unknown parameters of BGG and BEMWE models. We have also provide the values of L, AIC,
CAIC and BIC for the two models. From the values of L, AIC, CAICand BIC for the two models, it is clear that the
BEMWE model fits the data better than the BGG model. By substituting the MLEs of unknown parameters in (33), we
get estimation of the variance covariance matrix as

I−1
0 =







0.022067 0.001654−0.004712 0.0000852
0.001655 0.115258 0.01429 0.000472
−0.004712 0.014298 0.21701 0.000923
0.0000852 0.000472 0.000923 0.0000259






.

The 95% confidence intervals of
∧
γ1,

∧
γ2,

∧
γ3 and

∧

λ are (0,0.69414), (0.2311,2.3992), (1.18637, 4.10552) and(0,0.20584 )
respectively.

7 Conclusions

In this paper we have introduced the bivariate exponentiated modified Weibull extension distribution whose marginals
are exponentiated modified Weibull extension distributions. We discussed some statistical properties of the new bivariate
distribution. Maximum likelihood estimates of the new distribution are discussed and we provided the observed Fisher
information matrix. One real data set is analyzed and finallywe conclude that, the new model fits the given real data very
well than the BGG model.
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