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Abstract: In this paper, a new bivariate exponentiated modified We#iknsion distribution (BEMWE) is introduced. This model
is of Marshall-Olkin type. The marginals of the new bivagiaistribution have exponentiated modified Weibull extenslistribution
which proposed by Sarhan et 4].[ The joint probability density function and the joint culative distribution function are given in
closed forms. Several properties of this distribution hagen discussed. The maximum likelihood estimators of tharpeters are
derived. One real data set is analyzed using the new bieatistribution, which shows that the new model can be useae gtfectively

in fitting and analyzing real lifetime data than the bivagigeneralized Gompertz distribution (BGG) model.

Keywords: Joint probability density function, Conditional probatyil density function, Maximum likelihood estimators, Fésh
information matrix.

1 Introduction

Recently, Sarhan et all] has defined a new four-parameter distribution referredstexgponentiated modified Weibull
extension (EMWE) distribution. Sarhan et dl] flefined the (EMWE) distribution by exponentiating the newdified
Weibull extension (MWE) distribution which discussed bye)X&t al. P] as was done for the exponentiated weibull (EW)
distribution by Mudholkar et al.3. They observed that exponential distribution, geneealiexponential distribution
[4], Gompertz distributiond], generalized Gompertz (GG) distributiod] [ exponentiated Weibull (EW) distributior],
Weibull extension model of Cher8], modified Weibull extension (MWE) distributior®] and etc distributions can be
obtained as special cases of the (EMWE) distribution.

The objective of this paper is to provide a new bivariateriigtion, whose marginals are (EMWE) distributions which
referred to as bivariate exponentiated modified Weibukkesion (BEMWE) distribution. It is obtained using a method
similar to that used to obtain Marshall-Olkin bivariate ergntial model Marshall and Olkiri(,11,12,13].

The paper is organized as follows. Section 2 presents thekshodel yielding the (BEMWE) distribution. Also, the
joint cumulative distribution function, the joint probéibi density function, the marginal probability densitynfttions
and the conditional probability density functions of (BENB)Vdistribution are derived in Section 2. In Section 3 sum
reliability studies are obtained. Section 4 presents tkeentlarginal expectation of the (BEMWE) distribution. Seitio
5 obtains the parameters estimation using MLE. In sectiom6raerical results are obtained using real data. Finally, a
conclusion for the results is given in Section 7.

2 Bivariate exponentiated modified Weibull extension distibution

In this section we introduce the BEMWE distribution usingimikr method to that which was used by Marshall and
Olkin [10]. We start with the joint cumulative function of the propddeivariate distribution and so used it to derive
the corresponding joint probability density function. &y The marginal probability density functions and coratial

probability density functions of this distribution are @lderived. Let X be a random variable has univariate EMWE
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distribution with parameteng a, 3,A > 0, then the corresponding cumulative distribution functi@Df) is given by

af_y 17
F(x) = {1_e3<9‘ ) l>] . x>0, (1)

and the probability density function (PDF) takes the follogvform

axﬁ axﬁ
f(x) = yA Bel ™ (gx)P-te-z (€™ -1 {1—e‘ﬁ(e< ) —1>] . x>0. )

2.1 Joint cumulative distribution function

Suppose thalt); (i = 1,2,3) are three independent random variables suchlhatEMWE (y,a,3,A). DefineX; =
max{U1,Us} andX, = maxU,,Us}. Then, the bivariate vectdiXs, X;) has a bivariate exponentiated modified Weibull
extension distribution, with parameteng, o, y5, a,8,A). Let us denote it by BEMWEnA, y», y5,a, 3,A ). The following
interpretation can be provided for the BEMWE model.

Shock modelAssum thate there exists a three independent sources distagppose these shocks are affecting a
system with two components. It is assumed that the shock §mumce 1 reaches the system and destroys component 1
immediately, the shock from source 2 reaches the systemesitbgls component 2 immediately, while if the shock from
source 3 hits the system it destroys both the components dtiatedy. LetU; denote the inter-arrival times, between the
shocksin source i = 1,2, 3, which follow the distribution EMWE. I¥X;1, X, denote the survival times of the components,
then the bivariate vectdiX;, Xz) follows the BEMWE model.

We now study the joint cumulative distribution function dfet bivariate random vectdiXs, X;) in the following
lemma.

Lemma2.1. The joint CDF of(Xj,Xy) is given by

A (e(axl)ﬁ 1):| Vi |:1 _ eﬁ%(e(axz)ﬁ *l) Y2

A azB ¥
FeEMWE(X1,X2) = [1—9" 1-ea@” l>] ) 3

wherez = min(xg, x2) .

proof: Since the joint CDF of the random variabMsandX; is defined as

F(x1,%2) = P (X1 < x1, X2 < X2)
= P(max{U1,U3} < X1, max{Uz,Ug} < Xz)
= P(Ul < Xq,Up <xo,U3 < min(xl,xz)).

As the random variabldg; (i = 1,2,3) are mutually independent, we directly obtain

FeEMWE(X1, X2) = P (U1 < X1)P(Uz < %) P(Uz < min(xq,%2))

= Femwe(X1; V1, @, B, A ) Femwe(X2; ¥2, . B, A )Femwe(Z Y5, 0, B, A). 4)
Substituting from (1) into (4), we obtain (3), which comggthe proof of the lemma 2.1.

2.2 Joint probability density function

The following theorem gives the joint pdf of thg andX, which is the joint pdf of BEMWE 1, y», y3,a,3,A).
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Theorem 2.1. If the joint CDF ofX; andX; is as in (3), then the joint pdf of; andX; takes the form

fl(Xl,Xz) if X1 < X2
fBEMWE(X1, X2) = ¢ Ta(x1,x2) if X2 <Xg (5)
fo(X,X) if Xg=X> =X
where

fi(x1,%2) = femwe(Xe; y2,a,B,A) femwe(Xe: Vi + V8,0, B,A)
vo—1
— o (1+15) A2B2E@ ()P em €7 D [1—e3<e<‘”2>ﬁl>]

axy)B I R
Xe(axlﬂg(axl)pfle*%(e( 1) -1 |:1_ef\1(e< 1) -1 , (6)
fa(x1,%2) = femwe(Xw; v1,a,B,A) femwe(Xe; o+ ¥5, 0, B,A)
n—1
— (o) A 2B (axg )P e €7 {1_63@(%)“)] l
axp) N Rcan e
Xe(ax2>B(aX2)Bfle7%(e< 2) -1 |:1_ef\1(e< 2) -1 (7)
and
fa(%,X) = — > fenwe(ki Vi + Yo+ 15,0, B, 1)
nt+ya+ys
axB axB ityty—1
— 1A Bel@ (gx)P-le (@™ -1 [1_e—é<e< ) —1>] ' ®)

Proof: Let us first assume thag < xz. Then, the expression fd (x1,X2) can be simply obtained by differentiating the
joint CDF Fgemwe(X1,X2) given in (3) with respect tog andx,. Similarly, we find the expression db(xg,x2) when
X < X1. But f3(x,x) can not be derived in a similar method. For this reason, wethusdollowing identity to derive
f3(X,X).

0 rXo 0 X1 ©
/O /O fl(xl,xz)dxldxz+/0 /0 f2(x1,x2)dxzdx1+/0 fa(x, X)dx = 1. )
Let
© X2 ® Xy
|1=/ / f1(X1, %2)dxdx% and |2:/ / f2(X1, %2)dXedXs.
0 0 0 0
One can find that
0 axo)B axo)B yit+yo+ys—1
I = / yor Be @2 (ax)Ple w6 D {1—e‘%(e< 2 —ﬂ dxe (10)
0
and

B ntets-l
@™ —1>] dxq. (11)

2= /oo 1A B (axy)P e b€ - {1 —ea
0
Substituting from (10) and (11) into (9) we obtain

/ f3(X,X)dX= 1-11—1p
0

) Vityt+y—1

® ax)B ax)B
= / (yi+yo-+ys) A B (ax)f~te (€™ -1 [1—e—é<e‘ -1 dx
0

dx

° it+y+y-1
- / 1o B (ax)P~lga € -1 {1 _ g heP 1>] 1
0

® itptys-1
_/ Vl)‘Be(aX>B(ax)ﬁfleig(ewxwil) {1_63((3(“)‘31)] 1 dx
0

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

70 ~N

i
7

A. El-Gohary et al.: Bivariate exponentiated modified wdibu

Thus,
Vityetys—1
fa(x,X) = ysA Bl (ax)P-le~ 4@ - {1— e h @’ —D] i ,
which completes the proof.
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Fig. 1: A plot of the joint PDF of BEMWE(y1, y», 5, o, 3,A ) given in (5), for different values afya, y2, ys,a, 3, 7).

From Fig. 1. We note that, the joint PDF of BEMWE can take défe shapes depending on the values of its
parameters.
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2.3 Marginal probability density functions

The following theorem gives the marginal probability dép§iinctions ofX; andXs.

Theorem 2.2. The marginal probability density functions o§ (i = 1,2) is given by

fx, (%) = feMwe(s; Y+ V8,0, B,A), % >0,i=12

ax)P ax)f_qy TR
= (y+ y?’)/\Be(aXﬂB(axi)B*le*%(e( ) {1_33(4 i) 1)} ) (12)

Proof: The marginal cumulative distribution function & is

F(x)=P(X <x)=P(maxUi,Us} <x)=PUi <x,Us<X).
As the random variabldg; (i = 1,2) andUs are mutually independent, we directly obtain
F(Xi) = P(Ui < Xj)P(U3 < Xi)

_A(e<a><i)ﬁ_1) UARE .
=|l—-€e @ :FEMWE(XiuyI"'_anaﬁa)\)' (13)

From which we readily derive the pdf of , f(x) = aiXiF(xi), asin (12).

2.4 Conditional probability density functions

The following theorem gives the conditional probabilityndéy functions of( Xz, X2).

Theorem 2.3. The conditional probability density function &f givenX; =x; , (i,j =1,2,i # j) is given by
1 .
f>(<i‘)Xj(Xj|Xj) if 0 <x <X
2 .
fxi\xj(XiIXj): fé‘)xj(xim) if 0<Xj<X
3 .
fé‘)xj(xim) if X =x;>0

where
yit+ys—1
Vi (¥ + 18)A Be@) (ax)p-le (€™ -1 [1—e3<e<axi)ﬁl>}
D v |y —
0 06 [%) = — ,

ax; [;
i+ [1-e b

ax)B N L
f)((i)xj (Xl |Xj) _ M/\Be(axi)ﬁ(axi)ﬁflefg(e( i)7 —1) |:1_eg(e( ) 1):|

and

¥
VN o AP g
Fx (% 1 %)) _—Vl-f—)@{l e .

Proof: The proof follows immediately by substituting the joint pability density function of X1, X,) given in (6), (7)
and (8) and the marginal probability density function giuei12), using the relation

fxx (%,%)) .
Fxix; (% | %)) :% (i=1,2).
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3 Reliability studies

In this section, we present the joint survival function(¥f, X,), the CDF of the random variab¥= maxX;, X} and
the CDF of the random variab¥ = min{Xy, Xz}

3.1 Joint survival function

In this subsection, we derive the joint survival function¥f, Xz) in a compact form.

Theorem 3.1. The joint survival function of X3, X) is given by

SgL(Xl,Xz) if X1 < X2
Sy % (X1, %2) = S(X1,X2) if X2 < X1 (14)

So(X,X) if Xq=X=x

Yit+ys (1 [ e(aXZ)B )] )’2)

axq)B n+ys ax>)B Vot+V3 ax 1B Vi
SZ(X].’XZ) =1- [1—6‘%(@ 1) —1):| _ |:1_e é( 2)F :| (1 |: e( )P _ ):| >

and

¥ Vi v
S(xx) =1— {1—e?\z(em)ﬂ 1>] <{1—e?\x(emx)ﬂl)] l+ {1—e?\x<e(ax)ﬁ 1>] — {1—e3<e(”)ﬂ -1)

where

ax)B Yo+V3
Si(x, %) = 1— [1—9_%@ 271

w+w>

Proof: The joint survival function of X3, X,) can be obtained from the following relation

S<1-,X2 (leXZ) =1- Fxl (Xl) - FXz (XZ) + Fxl,xz (le XZ)- (15)
Substituting from (3) and (13) in (15), we get
yitys Votys

f f
Sx %o (X1,%2) = 1— [1—e‘%<e(axl) ‘1)] - {1— e (e ‘1)} +

{1 g >} " [1 _ g b’ 1>] " {1 _ ey

wherez = min(xy, x2) . From (16) we can be obtained simply the expressiorS; 04, x2), S(x1,X2) and S(Xq, xp) for
X1 < X2, X2 < X3 andxy = xp = X respectively, which completes the proof.

v
; (16)

Comment 3.1. Basu [L4] defined the bivariate failure ratd§] function h(xz,x,) for the random vectofX;, X;) as the
following relation

fxy % (X1, X2)
S(l X2 (Xla XZ)
We can obtained the bivariate failure rate functigr;, xz) for the random vectofXs, Xz) by substituting from (5) and
(14) in (17).

hX17X2 (XLXZ) (17)

Lemma3.1. The CDF of the random variab¥e= max X1, Xz} is given as

YitYotys

ay)B
Fr(y) = [1—e—é<e< D

(18)
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Proof: Since
Fr(y) = P(Y <y) =P(maxXy, Xo} <y) =P(X1 <y, X <)
= P(maxU,Us} <y,maxU,,Us} <y) =P (U1 <y,Us <y U3<Yy),
where the random variablés (i = 1,2, 3) are mutually independent, we directly obtain
Fr(y) = P(U1<y)P(Uz <y)P(Us <)
= Femwe(Y; v1. @, B, A ) Femwe(Y; ¥z, o, B, A )Femwe(Y: 15, @, B, A). (19)
Substituting from (1) in (19), we get (18) which completes gnoof of the lemma 3.1.

Comment 3.2. From lemma 3.1. we can say that, i and X, are independent EMWE random variables then
max{ X1, Xz} is also EMWE random variable.

Lemma 3.2. The CDF of the random variab® = min{X;, Xy} is given as

Fw(w) = {1 _ g hem” 1>} " [1 g b’ 1>] i [1 _g e’ l>] e (20)
Proof: Since
Fw(w) = P(W <w) = P(min{Xg, Xz} <w)=1—P(min{Xy, X2} >w)
=1-P(Xg>wX >w)=1—Sww). (21)
Substituting from (14) in (21), we get
P (1) = Fx () + Py (W) — Py x (W), (22)

Substituting from (3) and (13) in (22), we get (20) which cdetes the proof of the lemma 3.2.

4 The marginal expectation

In this section, we derive the marginal expectationXpfi = 1,2). The following theorem gives theh moments of
Xi (i=1,2) as infinite series expansion.

Theorem 3.1. Therth moment of X; (i = 1,2) is given by:

o MEWA &2 ((htw) - (1)) FRAK(j + 1)K Mt T
E(X )= T gl-B ZD%( )ak+3+r(k+1)5+rk! F(E

Proof: We will start with the known definition of theh moment of the random variabl&swith pdf f(x;) given by

EOC) = [ (x)dx.

+1). (23)

Substituting forfy, (x;) from (12), we get

)A ax)P ax)f_qy TR
E(X{ ) y_(;ly:aﬁ B r+B 1 _A(e( i) -1) |:1_e_%(e( i) _1):| d)q (24)
, A )P g A glax)P g ) —L

Since 0< e a 1) < 1 forx > 0, then by using the binomial series expansionbf- e al ) given

by
(V+ys)— o o
|:1 _ efg(e(axi )Bl):| _ Z) < V =+ yg > ( 1)] e—%(e(axi )Bfl>' (25)
(@© 2016 NSP
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Substituting from (25) into (24), we get
E(X' ) = W i(()’l’ +V8) — 1) (_1)j e% /mxir+B_1e(°’X‘)Be_Mj;l)e(axi)pd)q,
i= 0

al-P j
ax;)B
e ) , One gets
¢ )= UFWAB & & ((n+18) = 1) (=D A+ K aen /°°X_r+B—1 (kD)) gy
it 22\ akk o

Lety = (k+1)(ax)P in the above integral, then we can get

r (Vi+y)A V+yf; (-1 )J+k)\k(j—|—1 J+1
E(Xi al- T 418 Z) %( ) ak+ﬁ+r(k+ 1)E+rk| / y eydy (26)

Since,l (z / etz Idt ,z>0,x> 0, then

/O yPedy= (= +1). @27)

B
Substituting from (27) into (26), we get (23). This comptetiee proof.

5 Maximum liklihood estimators

In this section, we use the method of maximum likelihood ttineste the unknown parameters of the BEMWE
distribution. Consider constant values to the parametersd3 so, we want to estimate the other parameygrg, ysand
A. Suppose that we have a sample of size n ,of the fopy, X21), (X12,%22),.-+, (X1n,X2n) } from BEMWE distribution.
We use the following notation

lp = {xi <Xz}, la={xu>xa}, lz3={xi=xi=x}, |=I1UlaUls [l1] =ng, [lo] =ny, [I3] =ns, and
Ni+nN2+nN3=n.

Based on the observations, the likelihood function of theda of size n given by:

ng no n3
(ya, Yo, V8, 0, B, A) =[] fu(xais Xai) [ f2(Xai, Xai f3(Xi,X).
( ) i|:|(| ')il:l(' I)il:l( )
The log-likelihood function can be written as
m AL B Al \B
L(ys,y2.y3.a,B,A) = mIn +)IA2B2) + S (axy B2 § (elw)’ _1)_ 2 § (el@e)’ _q
(V2:¥e.18.@.B.2) = i (y2 (1 +18) A2B2) i;( 1) a;( a2 )

)\

+(yp—1) len o b (e’ +(B-1) Zln (a®x1%0)+ (y1+y3—1) Zln o b (e - 1)
)R 22 < B_A < axq)?
+;aX2. +n2|n<V1(V2+V3) B) 3 (@a)=3 5 @ 1)+ ;axZ.
——Zl glaxa)” len (1- e al (@)’ N+ (otya—1) Zln (1-e A(ewa)f - 1)y
+(B-1) Zln (a xlxz)—i—ngln(yg)\B)—%ii(e<"xi)ﬁ—1)+i;(axi)3+(ﬁ—1)i;In(axi)
+(V1+y2+y3—1)izlln(l—efﬁ(e(w ) (28)

Computing the first partial derivatives of (28) with respercys, y» andy; and setting the results equal zeros, we get the
likelihood equations as in the following form

B axi B
oL Zln E (eloxi) ,1 + +len % (axq;) 71 +Zl|n 1 -~ A( A (elax;) 71))7 (29)
oyp 1+V3
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GX2| GX2| le B l)

+le n(l—ea® Sl 1)) +Zln ~a (@ ), (30)
oL n M ax, (axg; B : )B
ﬂ:y1+1V3+-zlln(l e a (e -1y, +len G @) (31)
and
oL 2np 1 Q% N 1% o e R (L O
R D R N e PR s o e
i= i= i= ea(G 2 71)_1 a = ea(e 1 71)_1
2n 1 ny N 1 Ny N y -1 Ny e(orxu)ﬁ_l y2+y -1 ny e(aX2i>B_1 n
+72—* Z(e<axl') _1)_* Zl(e(ale) _1)+ : Zl /\( (axq)B ) + ° Z )\( (axp)B ) +73
a & o< 0 5 esE™"-1)_q 0 SResE@™@ -1 1
1 n3 ) + + e(UXj)B 1
1 Z(ewmﬁ 1) tVetVs— Zl ( B ) (32)
a L a & ek 1)

To get the MLEs of the parameteys y», 3 andA , we have to solve the above system of four non-linear equstibhe
solution of equations (29), (30) ,(31)and (32) are not easptve, so numerical technique is needed to get the MLEs.

5.1 Asymptotic confidence bounds

In this subsection we consider the approximate confiderteevias of the parametess, y», y3 andA by using variance
covariance matrix, ‘see Lawless6], wherel, * is the inverse of the observed information matrix

2L 2L oA 9%\ ! A A AA A
opf v Indys T%0A Var(y1) Covyi,y,) Covn,ys) COV(Vla/\)
0“L 0°L J°L 0“L A A A A A A
~1_ _ | 9eow 9@ dwow dwox | _ [ CoMyz,v1) Var(ya) Covys,¥s) Couyz,A) (33)
0 2L °L A AL A A A A A AN
Dy:0vi v:0v: 0 aoA CoW(ys,11) Cov(}s,¥2) Var(ys) Cowys,A)
PL L 9L AL AR AR NA A
AdyL OAdy, OAdys A2 CovA,y1) Cov(A, ) CovA,ys) Var(A)
The derivatives inl, * are given as follows
%L n n %L Ny %L Ny No
02 (ntvs? wiZ dvidys  (ntva? 0 B (etva)?
L No %L m m g %L o
ov0ys  (etvs? a3 (a2 (tva? B vidv,
2L 1[m goxi)f _q 2 glaxa)f _q Ny glax)f _q
aAdy, a 2 OB +Z 2 B + B )
i 0|9 eqE@™)-1)_1 Seh@@i-1)_1 &b -1)_1|
2L 1[m elax)f _q 2 glax)f_q s oglax)f_q ]
R it e o Yot
JAdy, a £ e%(e(axz.) “1)_q & eg(e("le) “1)_q A ehE™ ~1)_1]
2L 1[m gax)f_q 2 glax)f g s glax)f_q ]
Ady. a B * B + P )
0)\0)/3 a = e%(e(axh) _1)_1 = e%(e(axz) _1)_1 i= e%(e(axl) 71)_1_
(@© 2016 NSP
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Table. 1. American Football League (NFL) data

L X [ X% | X% [ X | X [ X [ X [ X% |
205 398 | 853 |1457] 290 | 290 ] 1.38 | 1.38
9.05 | 9.05 | 31.13| 49.88| 7.02 | 7.02 | 10.53| 10.53
0.85 | 0.85 | 14.58| 20.57| 6.42 | 6.42 | 12.13| 12.13
3.43 | 3.43 | 5.78 | 25.98| 8.98 | 8.98 | 14.58| 14.58
7.78 | 7.78 | 13.80| 49.75| 10.15| 10.15| 11.82| 11.82
10.57| 14.28| 7.25 | 7.25 | 8.87 | 8.87 | 552 | 11.27
7.05 | 7.05| 425 | 4.25 | 10.40| 10.25| 19.65| 10.70
258 | 258 | 165 | 1.65| 298 | 298 | 17.83| 17.83
7.23 | 9.68 | 6.42 | 15.08| 3.88 | 6.43 | 10.85| 38.07
6.85 | 34.58| 4.22 | 9.48 | 0.75 | 0.75
32.45| 42.35| 15.53| 15.53| 11.63| 17.37

and
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We can derive thél — §)100% confidence intervals of the parametgrss, ys andA by using variance covariance
matrix as in the following forms

A AL n A
ylizg Var(y) ,|:1,2,3and/\izg Var(A).

WhereZg is the upperg)th percentile of the standard normal distribution.

6 Data analysis

In this section we present the analysis of a bivariate retal slet to illustrate that the BEMWE distribution can be used
as a good lifetime model, comparing with the BGG distribntja7]. We will use the log-likeihood values(L), Akaike
information criterion (AIC), correct Akaike informatiorriterion (CAIC) and Bayesian information criterion (BI®st
statistic. The data set represents the American FootbatlgNal Football League) League data and it is obtained frem
matches played on three consecutive weekends in 1986. Taevdee first published in ‘Washington Post’ and they are
also available in Csorgo and Welstf]. It is a bivariate data set, and the variab¥gsandX; are as followsX; represents
the ‘game time’ to the first points scored by kicking the balivieeen goal posts, ant represents the ‘game time’ to the
first points scored by moving the ball into the end zone. Thieses are of interest to a casual spectator who wants to
know how long one has to wait to watch a touchdown or to a spamotého is interested only at the beginning stages of a
game.

The data (scoring times in minutes and seconds) are refieesienTable. 1. Here also all the data points are divided
by 100 just for computational purposes. The variables Hagédllowing structure: (iX; < Xz means that the first score
is a field goal, (ii)X; > Xo, means the first score is an unconverted touchdown or séfgty; = X, means the first score
is a converted touchdown.
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Table. 2. The MLEs and the values of L, AIC, CAIC and BIC

Model MLEs L AlIC CAIC BIC
BGG /i=0024y=0150 —2605 5290 53003 26807
(b isA.01) b= 0.310A=0.0044
BEMWE hi=0212y»=1.315 23086 48736 48839 24725

A A
(VLtoo1,A,0.1,042)  yh= 2.645 A= 0.096

Consider a constant value to the parameteesd 8 which take the values 0.1 and 0.42 respectively. In Tabléve2.
present the MLEs of the unknown parameters of BGG and BEMWHetsoWe have also provide the values of L, AIC,
CAIC and BIC for the two models. From the values of L, AIC, CA¥ad BIC for the two models, it is clear that the
BEMWE model fits the data better than the BGG model. By sulisi) the MLEs of unknown parameters in (33), we
get estimation of the variance covariance matrix as

0.022067 0001654—0.004712 0000085
0.001655 0115258 001429 0000472
—0.004712 0014298 (021701 0000923
0.0000852 (000472 0000923 0000025

-1
o™=

A
The 95% confidence intervals 65[, 92, % andA are (0,0.69414), (0.2311,2.3992), (1.18637, 4.10552)@yd20584 )
respectively.

7 Conclusions

In this paper we have introduced the bivariate exponeutiatedified Weibull extension distribution whose marginals
are exponentiated modified Weibull extension distribugidive discussed some statistical properties of the newiafear
distribution. Maximum likelihood estimates of the new distition are discussed and we provided the observed Fisher
information matrix. One real data set is analyzed and fina#lyconclude that, the new model fits the given real data very
well than the BGG model.
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