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Abstract: In this paper, we obtained point estimation and intervahestion for Lindely distribution parameter and the accafien
factor under step-stress accelerated life test with pesijre first failure sample. In addition, mean square errmSHs) of the
maximum likelihood estimators (MLEs) are computed to asiseis performance.

Keywords: Lindely distribution, maximum likelihood estimators, pressive first failure, step-stress partially accelertedests.

1 Introduction

Accelerated life tests (ALT) are used to estimate the lifietiof highly reliable products within a reasonable testinget
The test products are run at higher than usual levels ofsstwdsich includes temperature, voltage, pressure, etmjlitece
early failures. The test data obtained at the accelerateditions are analyzed in terms of a suitable physical mauel,
then extrapolated to stress to estimate the life distidouti he stress can be applied in different ways: commonlg use
methods are constant stress, progressive stress andrasp{seel]). In the constant-stress ALT, the stress is kept at
a constant level throughout the life of test products, seefample, 2,3,4]. In the progressive-stress ALT, the stress
applied to a test product is continuously increasing in tise® for example 5[ 6], considered the estimation problem
of the constant-stress accelerated life tests for extartdfithe exponential distribution under progressive cangoif7]
obtained the optimal plans of constant-stress accelelifgeests for the Lindley distributiond] estimated the parameters
of Weibull distribution under step-stress accelerati@hgtimated the parameters for power generalized Weibuleun
step-stress acceleration, see olB@ 11]. The step-stress ALT, in which the test condition changesgven time or upon
the occurrence of a specified number of failures, has beeiestby several authors see for example] [[13] obtained
the optimal simple step-stress ALT plans for the case wheseproducts have exponentially distributed lives and are
observed continuously until all test products fall4] extended their results to the case of censoring.

Suppose that n independent groups with k items within eaghygare put on a life tesR; groups and the group in
which the first failure is observed are randomly removed fthentest as soon as the first failof& | has occurred®,
groups and the group in which the second failure is observ@dsamdomly removed from the test as soon as the second
failure occurred(zgfmk , and finally when the m-th failure ka is observed, the remaining grouRs, (m<n) are
removed from the test. ThefjR |, < ... < YR are called progressively first-failure censored ordeisttes with the

m
progressive censored scheRe= (R, R;, ...,Ry), wheren = m+ZR; . If the failure times of then x k items originally
i=
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in the test are from a continuous population with distribotfunctionF (y) and probability density functiofi(y) , the
joint probability density function fo)r’l YR '7YmRm‘n‘k is given by [L4] as follows:

mnke "2;mnks -
K(Ri+1)—1
f1,2,---‘ (YlmnkaZmnkv le;qm,n,k): A(n m— 1 kml_lf YI mnk [1 F(YI mnk)] ; (1)
0 < X< X< ... < X< 00,
where
Anm—-1)=n(n—-R;—1)..(n—-Ri—Ry— ... = Rp_1— (m—1)). 2

The Lindley distribution was originally proposed b4 in the context of Bayesian statistics, as a counter exawiple
fudicial statistics.

Assume that the random variable X representing the lifebfreeproduct has Lindley distribution with parametérs
Lindley distribution has the following probability dengitunction

2 —Ox
F(x) = [%} x>0, 0>0,

and cumulative distribution function

B Ox _ox
F(x) = [1 <1+1+6)e ],x>0, 6 >0.

Lindely distribution has many real life applications see é@ample, 16] have introduced real data represent the
waiting times and fitting them. They proved that the Linddbtribution is better model than the exponential distridooit
They also found that the maximum likelihood has a standaxat eeduced than the exponential distribution.

2 Assumptions and test procedure

The following assumptions are used in the paper in the frawnlewf step-stress partially accelerated life test (SSBALT

1.Suppose that n identical and independent groups withmsitgithin each group are put on a life test and the lifetime
of each unit has Lindely distribution.

2.The test is terminated at the m-th failure, where m is peeffifn < n).

3.Each of the i k units is first run under normal use condition. If it does nait br removed from the test by a
precipiced time it is put under accelerated condition.

4.At the i-th failure a random number of the surviving grofpsi = 1,2,....m— 1, and the group in which the failure
Y.mnk has occurred are randomly selected and removed from theFiesily, at the m-th failure the remaining

m-1

surviving groupfy; = Nn—m— ziR. are all removed from the test and the test is terminated.

5.Letn; be the number of failures before time at normal conditiom an be the number of failures after tinteat
stress condition, with these notations the observed pssiyefirst-failure censored data are

Ylfr{,m’k<....<YnR <1<YR <..<YR

np+1mnk mmnk’

wheren = m+ ZR.

6.The tampered random variable (TRV) model holds. It wagp@sed by 17]. According to the tampered random
variable model the lifetime of a unit under SSPALT can betentas :

Y- T if T <,
T+TBT ifT >71 °

where T is the lifetime of the unit under normal conditianis the stress change time afids the acceleration factor

(B>1).
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7.The probability density function of y after acceleratisgive by

0, y<0

fa(y) = [M} ;

O<y<r

028 (1+ (B(yi — 1)+ 1))e 8BU-D+D) 1 <y< w,

fa(y) = 110 ;

3 Parameter s estimation

This section discusses the process of obtaining point aedvald estimations of the parameters of Lindely distribnti
based on progressive first-failure censored data under ISSPA

3.1 Point estimation

Lety = mn «_be the observed values of the lifetime y obtained from a @sgjve first-failure censoring scheme under
SSPALT, with censored scherfe= (R1,...,Rm), then the maximum likelihood function of the observations is
np m
L(8.B) = AR fulw) L= Ry T falop) (L= Faty 0 (3)
i= i=n+1

The log likelihood function may have the form:

0(0,B) =logA+logk™+ 3 log6? + logpB — S log(1+0)+
2 > logp-5

i=n;+1

21I0911+y.+zl (R+1)— |og(1+6— zley. (R+1)+

log(1+B(yi— 1)+ 1)+ g (k(Ri-i-l)—l)Iog(]_q_W

=1 i=nr1
S 0B — 1)+ 1) (KR +1),

i=n;+1

(4)
) _

(8,B) —IogA+ mlogk + 2m|og@+ (m—ng)logpB — mIog(1+ 0)+
Zilog 1+yi) +Zi (R+1)— Iog(1+e— Zieyl (R+1))+

6(B(yi —T)+T))_ (%)

log(1+B(i—1)+1)+ Z (k(R+1)—1)log(1+ 170

=N+l i=n+1
E 8(B(Yi — 1) +1))(K(R +1)).

i=n+1

Obtaining the first derivatives w.r@. and 3 as follows:

20(0.8) m-ny yi-t
B B L A+By-D+D

® R ) kR
> KR+ - D amn o 2, Q0 DKR )

i=n+1 i=n+1

(6)
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o6,8) 2m m & Yi B
56 0 1+6 KR+D 1)<((1+e)2+(1+e eyi)>

(Byi—1)+ 1) ()
Zly. (R+1) +| %ﬂ R+1)- 1)<((1+6) (1+9)9((B(Y—T)+T))>
(Bl 1)+ KR +1).

Solving this system of non linear equations for the unkno@s numerically because they are very difficult to solve
them algebraically.

3.2 Interval estimation

In this subsection we obtain the confidence intervals of erameters based on asymptotic distribution of the MLEs of
the unknown paramete®& = (3, 6). The asymptotic distribution of the MLEs is given bd:

((é -96), ([3 — B)) —N(0,17%(6,B), wherel~! is the variance covariance matrix of the unknown parameters

(6.B).
Where 2006
'”(@):_0970(3) at 6=6. (8)
0%(©)  2m m 2(1+6)+yi(1+26)
62 92+(1 92+21 (R+1)- ( (1+6)? 1+9)9y|)> ©
i (Bi—1)+71))(2(1+6)+(1+26) (Byi —1)+1)
k(R+1)—1 .
DAL ( (0P ooy )
020(0)  (m-m m (yi —1)°
ap? __< p? )_in1+l(1+B(yi_T)+T)2_ 10)
m . B 92(y_-[)2
DI (araresto—nor)
9% (©) & , (I+6)+0BY—D+T)(i—1) -0 —D([A+BYi—1)+1))
9008 &, RV (1 6) 6080 1) 112 o
> i—nkR+1)).

i=np+1

3.3 Approximate confidence intervals

When the sample size is small, the normal approximation negydor. However, a different transformation of the MLEs
can be used to correct the inadequate performance of theahapproximation. Based on the normal approximation of
the log-transformed MLEs {f]) and the approximate 100—y)% confidence interval fo6 andf, are respectively
given by:

]

5 Vi
6 pexp[ 22V @) | 12)
(Zl—g '111(9)> o
exp| —————

(@© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro5, No. 3, 393-398 (2016)www.naturalspublishing.com/Journals.asp NS = 397

~ Z -1 -
B ,ﬁexp <7Zl z Alll (B)) . (13)
1 B

4 Algorithm for simulation studies

In this section, simulation studies are conducted to ingetd the performances of the MLEs in terms of their biases an
mean square errors (MSESs) for different valuesah andk . Also, 95% asymptotic confidence intervals based on the
asymptotic distribution of the MLEs are computed. Two pesgive censoring schemes are considered:

schemelRi=n—-mR =0,r=23,...m-1

schemellR; =0, Ror=n—-m R =0,r=3,...m—-1

The estimation procedure is performed according to theviaiig algorithm:

1.Specify the values of, m,k andr.

2.Specify the values of the parametérandp3.

3.Generate a random sample of size k from the random variable Y by using mathematica becausehaid to
generate data manually.

4.Use the tampered random variable (TRV) model to generatggssively first-failure censored data for giverand
m

5.Use the progressive first failure censored data to conthatMLEs of the model parameters. The Newton Raphson
method is applied for solving the nonlinear system to obttaénMLEs of the parameters.

6.Replicate the steps (3-5) N times.

7.Compute the average values of the parameters and the ongane £rrors (MSES) of the parameters.

8.Estimate the asymptotic variances of the estimators afelmarameters.

9.Compute the approximate confidence bounds with confidernee95% for the two parameters of the model.

10.Steps 1-9 are done with different valuesigh andk.

5 Numerical results

Average values of MLEs of the parameter, the associated M8&¢he associated approximate confidence intervals based
on 1000 simulations, when population parameters vaue$.2 ,3 =1.1 and stress change time=0.5, N=1000.

Table 1: Values of MLEs of the parameter, MSEs and the configlartervals

k|l n|mj|ecs 6 mseoff B mseoff3 | 95% Cl length of6 | 95% Clof length of
1]25]15| I | 0.01163| 0.03549| 1.69911| 0.47295 0.00851 0.49999
I | 0.01042| 0.03595| 1.85151| 0.78613 0.00762 0.52199
1]130] 15| I | 0.01165| 0.03548| 1.68662| 0.48463 0.00853 0.49675
I | 0.01025| 0.03609| 1.94816| 0.89754 0.00749 0.5286
1]140] 15| I | 0.01179| 0.03543| 1.69187| 0.46703 0.00862 0.50216
I | 0.01014| 0.04142| 1.63068| 0.47419 0.03383 0.50372
1[50] 15| I | 0.01168| 0.03547| 1.69525| 0.48165 0.00854 0.49929
I | 0.01446| 0.03468| 1.61327| 0.45664 0.01056 0.49995
1[50]25| I | 0.00712| 0.03721| 1.59506| 0.41958 0.004 0.36635
I | 0.00831| 0.03676| 1.43945| 0.23919 0.00467 0.35349
1/60] 15| I | 0.01177| 0.03544| 1.6835 | 0.48442 0.0086 0.49597
I | 0.0142 | 0.03453| 1.6096 | 0.4427 0.01039 0.50299
1/60]30| I | 0.00649| 0.03885| 1.2926 | 0.07771 0.00402 0.29344
I | 0.00715| 0.03723| 1.35265| 0.10685 0.00366 0.30662
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k|l n|mjcs 0 mseof6 B mseoff3 | 95% ClI length ofd | 95% Clof length of3
2[30]10] I |0.01023| 0.03686| 1.52751| 0.34378 0.01004 0.60108
Il | 0.04453| 0.00356| 1.34308| 0.39516 0.71822 0.68313
2130|115 | | 0.01881| 0.11074| 1.49999| 0.25547 0.01421 0.4677
I | 0.16135| 0.13846| 1.3264 | 0.6304 0.23747 0.44604
2135|15| | | 0.00849| 0.03898| 1.49921| 0.24322 0.00666 0.46834
Il | 0.06889| 0.06566| 1.48206| 0.51619 0.14009 0.47317
2[40] 15| I | 0.00986| 0.0425 | 1.5019 | 0.25718 0.0083 0.46823
I | 0.02779| 0.04411| 1.58064| 0.4371 0.03244 0.49543
2140| 18| | | 0.08332| 0.53572| 1.21296| 0.13282 0.07289 0.36595
Il | 0.06779| 0.14879| 1.38538| 0.27628 0.08194 0.41104
2[50]15] I | 0.00831| 0.0392 | 1.51422| 0.26255 0.00733 0.47057
Il | 0.00727| 0.03716| 1.64046| 0.4043 0.00531 0.50736
6 Conclusion

We estimated the parameter of lindely distributiBnand the accelerating factqfi by using maximum likelihood
technique under step stress acceleration with progrefisvdailure data. we used two different schemes (I and I an
we conclouded the following:

1.The MSEs of are less than that qﬁ‘

2.Fort = 0.5 as nincrease the MSHBs andﬁ decrease for fixe@ and the fixed censoring scheme.
3.The confidence interval length also decreases when raisesdor the fixed censoring scheme.
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