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Abstract: A new family of distributions, viz, Harris Discrete Uniformdistribution is introduced. The various characteristics such as of
hazard rate, entropy, distribution of minimum of sequence of i.i.d random variables and the relation with the Marshall Olkin Discrete
Uniform Distribution are derived. An AR (1) model with this distribution for marginals is considered. The goodness of the distribution
is tested with a real data.
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1 Introduction

Adding one or more parameters to a distribution makes it richer and more flexible for modeling data. Marshall and Olkin
[3] introduced a new method for adding a parameter to a family ofdistributions with application to the exponential and
Weibull families. Jose and Krishna [2] have developed Marshall-Olkin extended uniform distribution. A similar set up in
the case of discrete uniform distribution- Marshall-Olkindiscrete uniform (MODU) distribution has been developed by
Sandhya and Prasanth [5] and this is found to be suitable for discrete data exhibiting clear positive or negative skewness.
Sandhya and Prasanth [4] also considered Marshall-Olkin Geometric (MOG) distribution and some characterizations of it.
Satheeshet al. [10] discussed a generalization of the Marshall-Olkin (MO) Scheme. A new method for adding two extra
parameters for discrete uniform distribution with Harris distribution (Sandhyaet al. [7] and [6]) is introduced here. We
call the new distribution as Harris Discrete Uniform (HDU) distribution and study its properties. A problem with discrete
models in some cases is that it is difficult to get compact mathematical expressions for even simple descriptive statistics
like expectation, variance and maximum likelihood estimates and so on. Here we overcome this difficulty by making use
of the numerical analysis based on the software package Mathematica.

If F(x) is the survival function (s.f) of a distribution withF(x) as the distribution function (d.f), then by MO method
we get another s.fG(x), by adding a new parameterθ to it. That is,

G(x,θ ) = θF(x)/(1− (1−θ )F(x)), −∞ < x< ∞,θ > 0. (1.1)

Then the corresponding d.f is,
G(x,θ ) = 1−G(x,θ ) = F(x)/(1− (1−θ )F(x)).

Let the variableX be discrete. Now from (1.1) consider the new p.m.fg(x,θ ) as,

g(x,θ ) = G(x,θ )−G(x−1,θ ) = f (x)/
[
(1− (1−θ )

F(x))(1− (1−θ )F(x−1))
]

(1.2)

where f (x) is the p.m.f. corresponding toF(x).
Let γG(x) be the hazard rate ofX, i.e.,

γG(x) = g(x)/G(x). (1.3)
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Let X be a discrete random variable (r.v) following uniform distribution with p.m.f f (x) = 1/a, x= 1,2,3. . .a, then the
distribution function isF(x) = x/a and the s.f isF(x) = (a− x)/a. By MO method we can form another s.f of MODU
distribution by substitutingF(x) = (a− x)/a in G(x,θ ), in (1.1) and we get,

G(x,θ ) = θ (a− x)/ [aθ +(1−θ )x] 0< θ < ∞. (1.4)

We writeX ∼ MODU(a,θ ) for a r.v. withG(x,θ ) given in (1.4).
Harris [1] considered a probability generating function (p.g.f.) defined by,

P(s) = s/(m− (m−1)sk)1/k, k∈ N

whereN is the set of positive integers andm> 1. (1.5)

He introduced this p.g.f. while considering a simple mathematical model for a branching process. From this p.g.f. we
can see that this is a generalization of the geometric distribution on{1,2,3. . .} to which it reduces whenk = 1 and its
probability carrying integers arek integers apart or the probabilities are concentrated on thepoints 1,1+k,1+2k. . .. It is
also true that these probabilities coincide with that of thenegative binomial distribution on{0,1,2, . . .} with parameters
1/mand 1/k. The distribution corresponding to the p.g.f. is denoted byH1(m,k,1/k). In the notation the suffix 1 suggests
that the support of the distribution starts from unity,mdetermines the probabilities,k implies that the probability carrying
integers of the distribution arek integers apart and 1/k is the exponent. The role played by this distribution in schemes
with random(N) sample sizes (random-sums orN-sums and random-extremes orN-extremes) in general and time series
models in particular whereN is a non-negative integer-valued r.v is discussed by Satheeshet al.[9]. Satheesh and Sandhya
[8] have discussed this p.g.f. in the context ofN-sums andN-extremes. The p.g.f. of Harris distribution has been widely
used in summation schemes. Satheeshet al. [9] have considered a generalization of geometric sums and itsstability by
studying distributions that are stable under summation with respect toH1(m,k,1/k) law. They discussed the stability of
N-sums of r.v.s whenN is Harris.

Proceeding as the MO set up mentioned in (1.1), let F(x) be the d.f of a discrete random variableX, f (x) be its p.m.f.
and letF(x) be the s.f of a distribution, then we can write the s.f of a new distribution by substituting thisF(x) in (1.5)
and we get a new Harris family of s.f by adding a new parameterθ as,

H(x,θ ,k) =
{

θF
k
(x)/[1− (1−θ )(Fk

(x))]
}1/k

.0< θ < ∞,k ∈ N (1.6)

whereN is the set of positive integers.

2 Harris Discrete Uniform Distribution

Let X follows the discrete uniform distribution with d.f,F(x) = x/a andF(x) = 1− (x/a),x= 1,2. . .a. Then, by adding
new parametersθ andk, by (1.6) we get the s.f of the new distribution as,

H(x,θ ,k) = θ 1/k(a− x)/[ak− (1−θ )(a− x)k]1/k,

x= 1,2,3. . .a, 0< θ < ∞,k∈ N (2.1)

whereN is the set of positive integers.

We writeX ∼ HDU(a,θ ,k), a,k integer≥ 1, θ > 0 for the discrete r.v. withH(x) given in (2.1).

Remark 2.1We see that when we put k= 1, HDU(a,θ ,k) distribution reduces to MODU(a,θ ) distribution (Sandhya and
Prasanth [5]) with s.f,

G(x,θ ) = θ (a− x)/[aθ +(1−θ )x],x= 1,2. . .a,θ > 0.

From (2.1) it is clear that

Remark 2.2HDU distribution does not possess additive property.

Remark 2.3HDU is not infinitely divisible (i.d) since their support is{1,2,3. . .a} a finite. It is not log convex, since the
class of log convex distribution forms a sub class of the class of i.d. distributions Satheesh, S and Sandhya, E [8].

Note: Throughout this paper we have,θ > 0 andk∈ N whereN is the set of positive integers.

2.1 The p.m.f. of HDU Distribution

The p.m.f of HDU distribution is,
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h(x,θ ,k) = H(x−1,θ ,k)−H(x,θ ,k).

= θ 1/k{[(a− x+1)/[ak− (1−θ )(a− x+1)k]1/k]

− [(a− x)/[ak− (1−θ )(a− x)k]1/k]},x= 1,2,3, . . .a. (2.2)

Since it is difficult to obtain compact mathematical expressions for reliability characteristics and moments for this discrete
distribution, we numerically evaluate these.

For different values for the parameters(a,θ ,k), we plot the graph of the p.m.f. ofX (Figure1 and Figure2). Some are
tabulated (Table1) here.

Table 1: The p.m.f. ofX ∼ HDU(a,θ ,k) with a= 20,k= 2.

θ 2 0.5
X

1 0.02596117 0.09317948

2 0.02797983 0.08179188

3 0.03014582 0.07299292

4 0.03246097 0.06604138

5 0.03492407 0.0604511

6 0.03752991 0.05589132

7 0.04026831 0.05213009

8 0.04312304 0.04900054

9 0.04607084 0.04638003

10 0.0490805 0.04417678

11 0.05211224 0.04232111

12 0.05511756 0.04075945

13 0.05803968 0.03945028

14 0.06081477 0.03836125

15 0.06337411 0.03746708

16 0.06564707 0.03674816

17 0.06756502 0.03618942

18 0.06906557 0.0357796

19 0.07009705 0.03551066

20 0.07062246 0.03537746

As ‘a’ tends to infinity, the probabilities are becoming infinitesimally small as clear from the third figure here.
Also we have

Lt
(a→∞)

H(x,θ ,k) = Lt
(a→∞)

θ 1/k(a− x)/[ak− (1−θ )(a− x)k]1/k

= Lt
(a→∞)

θ 1/k(1− (x/a))/[1− (1−θ )(1− (x/a))k]1/k

= θ 1/k/[1− (1−θ )]1/k.
= 1

i.e.,H(x,θ ,k) tends to 1 as ‘a’ tends to∞.
For θ > 1 the p.m.f. increases withx and forθ < 1 the p.m.f. decreases withx.

3 Some Relations between MO Scheme and Harris Scheme

Consider the p.g.f.,
P1(s) = θsk/(1− (1−θ )sk). (3.1)
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Fig. 1: The p.m.f. ofX ∼ HDU(a,θ ,k) with θ > 1
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Fig. 2: The p.m.f. ofX ∼ HDU(a,θ ,k) with θ < 1

This corresponds to the extended geometric r.vY on{k,2k,3k. . .} which has p.m.f.

P(Y = y) = θ (1−θ )y,y= k,2k,3k. . . , when 0< θ < 1. (3.2)

Now as in the case of defining a s.f in the MO scheme, we can definea new s.f,

J(x,θ ) = θF
k
(x)/[1−θ(Fk

(x))],k≥ 1 integer. (3.3)

Note that whenk= 1, this reduces to the MO scheme.
Now introduce MO extended geometric uniform (MOEGU) r.v on{1,2,3. . .a}, which has s.f,

J(x,a,θ ) = θ ((a− x)/a)k/(1− (1−θ )((a− x)/a)k)

= θ (a− x)k/((a)k− (1−θ )(a− x)k) (3.4)

Now considerX following HDU distribution.
Then from (2.1) its s.f. is,
H(x,θ ,k) = θ 1/k(a− x)/[ak− (1−θ )(a− x)k]1/k,

x= 1,2,3. . .a, 0< θ < ∞,k> 0.
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LetY = min(X1, . . .Xk), wherexi , i = 1,2,3, . . .k are independent copies ofXi ∼ HDU(a,θ ,k).
Then the s.f ofY is,

P(Y > y) = [P(Yi> y)]k

= {θ 1/k(a− x)/[ak− (1−θ )(a− x)k]1/k}k

= θ (a− x)k/[ak− (1−θ )(a− x)k]

which is the s.f of MOEGU. Thus we have,

Theorem 3.1min(X1, . . .Xk) follows MOGEU(θ ,a,k), if and only if Xi ,
i = 1,2, . . .k are i.i.d HDU(θ ,a,k) on{1,2,3. . .a}.

The following theorem connects MODU and HDU distributions.

Theorem 3.2min(Xk
1 , . . .X

k
k ) follows MODU(a,θ ) if and only if Xi , i = 1,2, . . .k are i.i.d HDU(θ ,a,k) on{1,2,3. . .a}.

Proof.LetY = min(Xk
1 ,X

k
2 , . . . ,X

k
k ). Then

P(Y > y) = P
(

Xk
1 > y,Xk

2 > y, . . . ,Xk
k > y

)

= [P
(

Xk
i > y

)
]k

= [P(Xi > y1/k)]k

=
θ (a− x)

[a− (1−θ )(a− x)]
, which is the s.f of MODU(a,θ ).

From the s.f ofHDU(a,θ ,k) in (2.1), the s.f ofXi (evaluated aty1/k) implies that, the s.fP(Y > y) = θ (a− x)/[a− (1−
θ )(a− x)] which is the s.f ofMODU(a,θ ). Hence the proof. Retracing the steps we haveonly if part.

Generalizing this result we get,

Theorem 3.3A r.v X has s.f of the form(2.1) if and only ifmin(Xk
1 . . .Xk

k ) has s.f of the form(1.1), Xi , i = 1,2, . . .k are i.i.d
r.v.

Proof.We have the s.f,H(x,θ ,k) = θ 1/k F(x)/[1− (1−θ )(Fk
(x))]1/k for Harris family.

Let Z = min
(
Xk

1 ,X
k
2 , . . . ,X

k
k

)
. Then

Hz(z,θ ,k) = [P
(

Xk
i > z

)
]k

= [P
(

Xi > z1/k
)
]k

=
{

θ 1/kF
1/k

(x)/[1− (1−θ )(Fk
(x))]1/k

}k
.

= θF(x)/[1− (1−θ )(F(x))]

from (1.1) this s.f of MO scheme of distributions.

4 HDU Distribution as the Distribution of Minimum of a Sequence of i.i.d. Random Variables

The following theorem gives a characterization of minimum of a sequence of i.i.d. r.vs following discrete uniform
distribution.

Theorem 4.1Let {Xi, i ≥ 1} be a sequence of i.i.d. r.vs with common s.f,F(x). Let N be a H1(θ ,k,1/k) r.v independent

of {Xi, i ≥ 1} such that P(N = n) =
( ( n

k−1)
(n−1)/k

)
(θ )1/k(1− θ )(n−1)/k, n= 1,1+ k, 1+ 2k, . . .k ∈ N where N is the set of

positive integers,0< θ < ∞. Let UN = min
(1≤i≤N)

(Xi). Then{UN} is distributed as HDU(a,θ ,k) distribution if and only if

{Xi} follows discrete uniform distribution. i= 1,2,3. . .a.
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Proof.The s.f ofUN,

J(x) = P(UN > x)

=
∞

∑
1
[F(x)]nP(N = n)

= θ 1/kF(x)/[1− (1−θ )Fk
(x)]1/k with F(x) = (a− x)/a.

= θ 1/k[(a− x)/a]/[1− (1−θ )((a−x)/a)k]1/k.

= θ 1/k(a− x)/[ak− (1−θ )(a− x)k]1/k

which is the s.f of HDU(a,θ ,k).
By retracing the steps we have the converse.

5 Hazard Function

Let γH(x) be the hazard function ofX ∼ HDU(a,θ ,k), then,

γH(x) = h(x)/H(x).

=
{
[θ 1/k(a− x+1)/(ak− (1−θ )(a− x+1)k)1/k]/

[θ 1/k(a− x)/(ak− (1−θ )(a− x)k)1/k]
}
−1.

= [(a− x+1)/(a− x)]{(ak− (1−θ )(a− x)k)/

(ak− (1−θ )(a− x+1)k)}1/k. (5.1)

5.1 Increasing /Decreasing Failure Rate (IFR/DFR)

From (5.1), Comparing hazard function atx and x+ 1, we have HDU is IFR whenθ >
a−2x
2a−2x

and DFR when

θ <
a−2x
2a−2x

.

We numerically (Table2) and graphically (Figure3) evaluate this.

From Table2 we have,

Remark 5.1The value of the Hazard function is decreasing when the valueof θ increasing.

From the graph also we can see that, the failure rate of the distribution is, increasing (IFR) whenθ > (a−2x)/(2a−
2x), decreasing (DFR) whenθ < (a−2x)/(2a−2x).

6 AR (1) Model with HDU Distribution as Marginal Distribution

Considerk independent AR(1) sequences{Xi,n}, i = 1,2, . . . ,k, for n> 0 integer and someb> 0, and the structure

∧

i

Xi,n =





b{
∧
i

Xi,n−1} with probabilityp

b{
∧
i

Xi,n−1}
∧
{
∧
i

εi,n−1} with probability(1− p).
(6.1)

The structure (6.1), was defined, by Satheeshet al. [11]. We now have

Theorem 6.1In an AR (1) process with structure(6.1), {Xi,n} is stationary with HDU(θ ,a,k) marginal if and only if{εn}
is distributed as a discrete uniform r.v on{1,2, . . .a}.
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Table 2: Hazard functionγH(x) for X ∼ HDU(a,θ ,k) with a= 20,k= 2

θ 3 1/3 2 0.5 5 0.2 10 0.1
X

1 0.017846 0.150695 0.026653 0.102754 0.010745 0.241034 0.005387 0.442335

2 0.020152 0.134322 0.029575 0.099138 0.012310 0.187763 0.006239 0.268165

3 0.022850 0.123955 0.032913 0.097060 0.014180 0.159333 0.007277 0.202867

4 0.026022 0.117449 0.036743 0.096271 0.016433 0.142569 0.008554 0.169857

5 0.029771 0.113692 0.041158 0.096637 0.019167 0.132400 0.010139 0.151063

6 0.034228 0.112085 0.046276 0.098114 0.022509 0.126506 0.012129 0.140028

7 0.039561 0.112327 0.052246 0.100730 0.026632 0.123729 0.014658 0.133932

8 0.045991 0.114309 0.059266 0.104585 0.031765 0.123500 0.017914 0.131428

9 0.053808 0.118082 0.067598 0.109868 0.038220 0.125597 0.022169 0.131895

10 0.063410 0.123854 0.077603 0.116880 0.046433 0.130064 0.027819 0.135147

11 0.075350 0.132025 0.089795 0.126089 0.057016 0.137193 0.035458 0.141344

12 0.090438 0.143276 0.104940 0.138222 0.070866 0.147595 0.045997 0.151010

13 0.109914 0.158738 0.124232 0.154444 0.089339 0.162350 0.060877 0.165169

14 0.135803 0.180349 0.149653 0.176721 0.114610 0.183361 0.082475 0.185688

15 0.171700 0.211645 0.184765 0.208607 0.150447 0.214140 0.114941 0.216051

16 0.224744 0.259744 0.236693 0.257237 0.204159 0.261786 0.166190 0.263339

17 0.311550 0.341300 0.322067 0.339272 0.292477 0.342940 0.253752 0.344181

18 0.481948 0.506331 0.490803 0.504733 0.465192 0.507618 0.428111 0.508587

19 0.985239 1.005027 0.992560 1.003765 0.970942 1.006039 0.937083 1.0068

Proof.We have,

H(t) = {θF
k
(bt)/[1− (1−θ )Fk

(bt)}1/k.

Let F(bt) = (a− x)/a,

then, H(t) = {θF
k
(bt)/[1− (1−θ )Fk

(bt)}1/k.

=
[
θ 1/k(a− x)/a

]
/[1− (1−θ )((a− x)/a)k]1/k.

= θ 1/k(a− x)/[ak− (1−θ )(a− x)k]1/k.

SoXi,1 is HDU(a,θ ,k). We can show the converse by retracing the steps.

7 Expectation, Standard Deviation and Entropy of HDU Random Variable

We numerically compute expectation, standard deviation (sd) (Table3, Table4) and entropy (Table6) of the HDU r.v with
differenta,k andθ . We have,
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Fig. 3: Hazard function forX ∼ HDU(a,θ ,k)

Shannon’s Entropy=−∑
i

p(xi) logp(xi), i = 1,2, . . . ,

=−∑
i

θ 1/k{[(a− x)/(ak− (1−θ )(a− x)k)1/k]

− [(a− x−1)/(ak− (1−θ )(a− x−1)k)1/k]}

log(θ 1/k{[(a− x)/(ak− (1−θ )(a− x)k)1/k]

− [(a− x−1)/(ak− (1−θ )(a− x−1)k)1/k]}).

From Table3 and Table4, we have,

Remark 7.1If X ∼ HDU(a,θ ,k), then for allθ > 0, E(X) increases whenθ increases.

Remark 7.2In the case of HDU(a,θ ,k), the sd is decreasing with increasing value ofθ , whenθ > 1 and increasing with
increasing value ofθ , whenθ < 1.
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Table 3: Expectation and sd ofX ∼ HDU(a,θ ,k), θ < 1, k= 2 & with different values of ‘a’

a
θ = 0.25 θ = 0.5 θ = 0.75

E(X) Sd(X) E(X) Sd(X) E(X) Sd(X)

10 3.861796 2.843892 4.652862 2.912528 5.144906 2.902485

12 4.523884 3.42449 5.479514 3.502731 6.072462 3.489097

15 5.519222 4.292872 6.720372 4.386299 7.464119 4.367621

20 7.181154 5.736697 8.789652 5.856586 9.783979 5.829971

25 8.84495 7.178379 10.85965 7.325473 12.1041 7.29121

30 10.50969 10.50969 12.93 8.793659 14.42435 8.751893

50 17.17249 14.37691 21.21283 14.6636 23.70586 14.59241

75 25.50389 21.57098 31.56745 21.99891 35.30814 21.89138

100 33.83625 28.76394 41.92243 29.33352 46.91055 29.18981

Table 4: Expectation and sd ofX ∼ HDU(a,θ ,k), θ > 1, k= 2 & with different values of ‘a’

A
θ = 2 θ = 5 θ = 7.5

E(X) Sd(X) E(X) Sd(X) E(X) Sd(X)

10 6.350238 2.724793 7.392823 2.397142 7.803423 2.219902

12 7.523084 3.274012 8.777634 2.880833 9.272117 2.668547

15 9.281715 4.096862 10.85342 3.605371 11.47332 3.340406

20 12.21192 5.466982 14.31117 4.811627 15.13956 4.45873

25 15.14161 6.836327 17.76779 6.017109 18.80434 5.576207

30 18.07105 8.205286 21.22383 7.222207 22.46839 6.693266

50 29.7878 13.67958 35.04576 12.04107 37.12171 11.15984

75 44.43297 20.52129 52.32146 18.0635 55.43619 16.74181

100 59.07788 27.36262 69.5966 24.08555 73.74994 22.32338

Remark 7.3The E(X) and sd(X) for X ∼ HDU(a,θ ,k) is greater than or equal to the E(X) and sd(X) of
X ∼ MODU(a,θ ) for θ < 1 and is less than or equal to the E(X) and sd(X) of X ∼ MODU(a,θ ) for θ > 1.

Let X ∼ HDU(a,θ ,k), then the mean, median and mode of the distribution from (Figure1, Figure2, Table1, Table3
and Table4) for differenta andθ are computed below (Table5).

From the Figure1, Figure2, Table5 we have,

Remark 7.4The HDU distribution is positively skewed whenθ < 1 since mode< median< mean and the distribution is
negatively skewed whenθ > 1 since mode> median> mean. Also it is to be noted that the distribution is unimodal,
i.e., whenθ < 1 the mode= 1 and whenθ > 1 mode= a.

The HDU distribution is therefore a suitable model for, the data showing positive skewness whenθ > 1 and the data
showing negative skewness whenθ < 1.

Remark 7.5For X ∼ HDU(a.θ ,k) the mean, median and mode increase with k forθ < 1 and decrease with k forθ > 1.

Remark 7.6For X ∼ HDU(a.θ ,k) the mean and median are greater than that of X∼ MODU(a,θ ) whenθ < 1 and less
than that of X∼ MODU(a,θ ) whenθ > 1 (mode is equal in both MODU(a,θ ) and HDU(a,θ ,k) distributions).
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Table 5: Mean, median, mode, s.d. and skewness of the HDU distribution with differenta,θ andk= 2

k a θ mean median mode Sd skewness

2

10

0.2 3.636 3 1 2.80063 0.9378863
0.5 4.652 4 1 2.912528 1.25419
2 6.350 7 10 2.724793 -1.339464
5 7.392 8 10 2.397142 -1.087619

20

0.2 6.699 5 1 5.657518 1.007351
0.5 8.789 8 1 5.856586 1.330067
2 12.212 13 20 5.466982 -1.424567
5 14.311 15 20 4.811627 -1.182309

100

0.2 31.405 21 1 28.38168 1.071307
0.5 41.92 37 1 29.33352 1.395074
2 59.077 63 100 27.36262 -1.495548
5 69.596 75 100 24.08555 -1.262308

Now we have the computed values for entropy.

Table 6: Entropy ofX ∼ HDU(a,θ ,k) with different “a” & “ θ ”, with k= 2

a θ = 0.1 θ = 0.2 θ = 0.25 θ = 0.5 θ = 2 θ = 4 θ = 5 θ = 10

10 1.797096 2.04458 2.109813 2.254229 2.256818 2.128346 2.071995 1.859359

15 2.180142 2.443605 2.511336 2.65915 2.66204 2.532955 2.476311 2.262265

20 2.458405 2.728861 2.797568 2.94664 2.949637 2.820337 2.763589 2.549047

30 2.856328 3.132525 3.201971 3.351967 3.355042 3.225588 3.168766 2.953867

50 3.362921 3.642403 3.712243 3.862721 3.865836 3.736303 3.679444 3.464362

100 4.054183 4.335145 4.405155 4.555839 4.55897 4.429404 4.372528 4.157369

From table6 it is observed that,

Remark 7.7The entropy of X∼ HDU(a,θ ,k) is approximately equal to the entropy of X∼ HDU(a,1/θ ,k).

Remark 7.8The entropy of X∼ HDU(a,θ ,k) is always greater than or equal to the entropy of X∼ MODU(a,θ ) for all
θ .

8 Maximum Likelihood Estimates (MLE) of the Parameters of HDU (a,θ ,k)

Let x1,x2, . . . ,xn be a random sample fromHDU(a,θ ,k). Then from (2.2) we write the likelihood functionL of the
distribution. By partial differentiation ofL w.r.toa,θ andk and equating them to zero we formulate 3 non-linear equations.
We can numerically find (with the help of mathematica) the MLEof a,θ andk as the solution of these non-linear equations.
But here the maximum of the range of observations isa. So MLE of the parametera, (â) is the largest value of the
observations. Then substituting the MLE ofa in the remaining two equations we find MLE ofθ andk.

9 An Application of HDU

Example 91A travel agency in Palakkad city (Kerala, India) arrange mini luxury trips (19 seats) to Cochin (another town
about 150 Kms from Palakkad) on all days excluding Sundays. The booking status (vacancies) was observed from their
database on the day before the scheduled date (since they aremaking arrangement and announcing their trip status before
12 hours so that if the booking status is very less, they will pool their trips.) (data collected in each 50 days).
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Table 7: Observed frequencies:Oi – the number of vacancies in each day

Oi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Year 2010-11

Apr-May 9 6 6 1 2 3 2 3 3 2 1 1 1 1 1 2 1 2 2 1

June-July 10 5 3 3 4 3 3 2 1 4 1 1 1 0 1 0 1 3 2 2

Aug-Sep 9 7 2 6 1 1 2 2 1 2 3 2 2 3 0 1 4 0 1 1

Oct-Nov 9 10 5 1 3 2 0 1 2 3 0 1 2 1 2 3 3 2 0 0

Dec-Jan 2011 10 6 4 4 2 1 3 2 1 5 2 1 2 1 2 0 2 1 1 0

Feb-Mar 10 6 2 5 2 2 3 1 2 2 4 0 2 0 0 2 3 1 0 3

Apr-May 10 4 5 4 3 3 3 1 1 2 0 2 1 1 1 0 3 1 1 4

June-July 9 6 4 2 5 3 1 2 2 1 0 4 2 3 0 2 0 3 0 0

Aug-Sep 10 9 1 2 3 3 5 1 1 2 1 2 3 1 0 1 1 2 1 1

Let X be the number of vacancies in each day plus one unit and assumeX is HDU(a,θ ,k). i.e.,x= 1,2,3. . .20.
We arbitrarily fix 4 terms, and the MLE’s are computed.

Table 8: The MLE of θ andk (Sample size = 50, MLE ofa, â= max(x) = 20) 4 months

Month June-July Feb-March Apr-May Aug-Sep Mean SE

MLE θ̂ 0.1993 0.1733 0.186 0.1854 0.186 0.01738

MLE k̂ 2.688 3.270 2.970 2.9113 2.9598 0.04314

k̂ rounded 3 3 3 3 3

Table 9: Mean, median and mode of the data in the selected months.

a Month MLE of θ = θ̂ mean median mode Sd skewness

20

June-July 0.1993 7.3 5 1 6.060528 1.036695

Feb-March 0.1733 7.36 5 1 6.0721 1.047414

Apr-May 0.186 7.68 5 1 5.124217 1.303614

Aug-Sep 0.1854 6.54 5 1 5.978997 1.093829

Here mode< median< mean the distribution is is positively skewed. From remark7.4, then HDU distribution is
supposed to apply for, the data showing positive skewness whenθ < 1. Assume that the data follows HDU distribution.
Sample size = 50, MLE ofa, â= max(x) = 20 and estimate ofk rounded,̂k = 3. Initially we fit the MODU distribution
to the data.

The Chi-square test is used to test the goodness of fit of the distribution with level of significanceα = 0.05. The
expected frequencies are calculated (Ei = N ∗h(xi,a,θ ,k) = 50∗h(xi,20, θ̂ , k̂) for i = 1,2, . . .20). Then found the value
of χ2 statistics and observed the degrees of freedom (d.f). The results are tabulated below.

Result: From thep-values it is seen that HDU distribution is a better fit than MODU distribution in this situation.
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Table 10: Goodness of fit of MODU and HDU distribution withα = 0.05

Distribution June-July Feb-Mar Apr-May Aug-Sep

MODU

χ2 statistics 12.807 17.157 19.449 11.1659

d.f 6 6 6 6

p-value 0.0462 0.0087 0.0035 0.0834

HDU

χ2 statistics 5.688 5.2 6.2715 5.98572

d.f 7 7 7 7

p-value 0.5766 0.6356 0.5084 0.5414

References

[1] Harris, T E (1948); Branching Processes,Annals of Mathematical Statistics, 19, 474–494.
[2] Jose, K K and Krishna, E (2011); Marshall-Olkin ExtendedUniform Distribution,ProbStat Forum, Volume 04, Pages 78–88 ISSN

0974-3235.
[3] Marshall, A.W and Olkin, I (1997); A New Method for Addinga Parameter to a Family of Distribution with Application to the

Exponential and Wiebull Families,Biometrika, 84.3 pp 641–652.
[4] Sandhya, E and Prasanth, C B (2012); A generalized geometric distribution,Proceedings of international conference on frontiers

of statistics and application & 32nd annual conference of Indian society for probability and statistics, Department of Statistics,
Podichery University, Dec-2012; Pages 261–269, ISBN 978-93-82338-78-9, Bonfring publication.

[5] Sandhya, E and Prasanth, C B (2013); Marshall-Olkin Discrete uniform distribution,Journal of probability, Volume 2014, 10
pages, Article ID 979312, Hindawi Publishing Corporation.

[6] Sandhya, E, Sherly, S, Jose, K K and Raju, N (2006b); Characterizations of the Extended Geometric, Harris, Negative Binomial
and Gamma Distributions,Stars Int.Journal.

[7] Sandhya, E, Sherly, S and Raju, N (2006a); Harris family of Discrete Distributions,Proceedings of National Seminar Conducted
by Kerala Statistical Association and The Dept.of Statistics, University of Kerala, March 2006.

[8] Satheesh, S and Sandhya, E (2003); Infinite divisibilityand max-infinite divisibility with random sample size,Statist.Meth., 5,
126–139.

[9] Satheesh, S, Sandhya, E and Nair, N U (2002); Stability ofRandom Sums,Stoch. Modelling and Appl., 5, 17–26.
[10] Satheesh, S, Sandhya, E and Prasanth, C B (2012); A Generalization of the Marshal-Olkin Scheme and Related Processes,

Collection of Recent Statistical Methods and Applications, 2012, pp.12–17. Publication of Department of Statistics,University
of Kerala.

[11] Satheesh,S, Sandhya, E and Sherly, S (2006); A generalization of Stationary AR(1) Schemes,Statistical Methods, 8(2), 213–225.

Prasanth C B received his PhD degree in Statistics from Mahatma Gandhi University,
Kerala, India under the supervision and guidance of Dr.E.Sandhya. His main research interests
are: distribution theory, applied statistics, probability theory and study on urbanization. He has
published research articles in reputed international and national journals.

c© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.5, No. 1, 109-121 (2016) /www.naturalspublishing.com/Journals.asp 121

E. Sandhya took her Ph.D from the Department of Statistics,University
of Kerala in 1992 under the supervision and guidance of Dr.R.N.Pillai. Her
research interest includes distribution theory,probability theory in general
and infinite divisibility and geometric infinite divisibility and its extensions in particular.
She has more than 35 published papers in various international and national publications.
She is the reviewer for Mathematical Reviews of American Mathematical Society, USA .

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Harris Discrete Uniform Distribution
	Some Relations between MO Scheme and Harris Scheme
	HDU Distribution as the Distribution of Minimum of a Sequence of i.i.d. Random Variables
	Hazard Function
	AR (1) Model with HDU Distribution as Marginal Distribution
	Expectation, Standard Deviation and Entropy of HDU Random Variable
	Maximum Likelihood Estimates (MLE) of the Parameters of HDU (a,,k)
	An Application of HDU

