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Abstract: A new family of distributions, viz, Harris Discrete Unifordistribution is introduced. The various characteristioshsas of
hazard rate, entropy, distribution of minimum of sequenftiei.d random variables and the relation with the Marshdki® Discrete
Uniform Distribution are derived. An AR (1) model with thissttibution for marginals is considered. The goodness efdistribution
is tested with a real data.
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1 Introduction

Adding one or more parameters to a distribution makes ieriemd more flexible for modeling data. Marshall and Olkin
[3] introduced a new method for adding a parameter to a familjistfibutions with application to the exponential and
Weibull families. Jose and Krishn&][have developed Marshall-Olkin extended uniform disttid. A similar set up in
the case of discrete uniform distribution- Marshall-Olkiiscrete uniform (MODU) distribution has been developed by
Sandhya and Prasanth] pind this is found to be suitable for discrete data exhigititear positive or negative skewness.
Sandhya and Prasant plso considered Marshall-Olkin Geometric (MOG) disttibn and some characterizations of it.
Satheeslet al.[10] discussed a generalization of the Marshall-Olkin (MO) &dle. A new method for adding two extra
parameters for discrete uniform distribution with Harristdbution (Sandhyat al.[7] and [6]) is introduced here. We
call the new distribution as Harris Discrete Uniform (HDUttibution and study its properties. A problem with digere
models in some cases is that it is difficult to get compact eratitical expressions for even simple descriptive stesisti
like expectation, variance and maximum likelihood est@sand so on. Here we overcome this difficulty by making use
of the numerical analysis based on the software packagedvittica.

If F(x) is the survival function (s.f) of a distribution wit(x) as the distribution function (d.f), then by MO method
we get another s®(x), by adding a new parametérto it. That is,

G(x,0) = OF(X)/(1— (1— B)F(X)), —o0 < X< 00,6 > 0. (1.1)

Then the corresponding d.fis, _
G(x,0) =1-G(x,0) =F(x)/(1— (1— 6)F(x)).

Let the variableX be discrete. Now froml( 1) consider the new p.mdix, 8) as,
9(x,6) = G(x,8) - G(x~1,8) = F(x)/ (1~ (1 6)
FM)1-(1-0F(x-1)] 1.2)

wheref (x) is the p.m.f. corresponding ©(x).
Let ys(X) be the hazard rate &, i.e.,

Yo (X) = 9(x)/G(X). (1.3)
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Let X be a discrete random variable (r.v) following uniform distition with p.m.ff(x) = 1/a, x=1,2,3...4a, then the
distribution function is- (x) = x/a and the s.f i (x) = (a—x)/a. By MO method we can form another s.f of MODU
distribution by substituting (x) = (a— x)/ain G(x,68), in (1.1) and we get,

G(x,0)=60(a—x)/[a@+(1—-0)x] 0< 6 < oo, (1.4)

We write X ~ MODU(a, 8) for a r.v. withG(x, 8) given in (L.4).
Harris [1] considered a probability generating function (p.g.f.fied by,

P(s) =s/(m— (m— 1)) ke N
whereN is the set of positive integers ana> 1.  (1.5)

He introduced this p.g.f. while considering a simple mathgoal model for a branching process. From this p.g.f. we
can see that this is a generalization of the geometric bigtdn on{1,2,3...} to which it reduces whek = 1 and its
probability carrying integers ateintegers apart or the probabilities are concentrated opaires 11+ k, 14 2k.. .. Itis
also true that these probabilities coincide with that ofriegative binomial distribution of0,1,2,...} with parameters
1/mand Yk. The distribution corresponding to the p.g.f. is denotedtb{m, k, 1/k). In the notation the suffix 1 suggests
that the support of the distribution starts from unityetermines the probabilitieksjmplies that the probability carrying
integers of the distribution afdeintegers apart and/k is the exponent. The role played by this distribution in sche
with random(N) sample sizes (random-sumshsums and random-extremesiextremes) in general and time series
models in particular whernd is a non-negative integer-valued r.v is discussed by Ssltfetal.[9]. Satheesh and Sandhya
[8] have discussed this p.g.f. in the contextNsbums andN-extremes. The p.g.f. of Harris distribution has been widel
used in summation schemes. Sathestsal. [9] have considered a generalization of geometric sums arsdalslity by
studying distributions that are stable under summatioh véspect tdH1(m,k, 1/k) law. They discussed the stability of
N-sums of r.v.s wheiN is Harris.

Proceeding as the MO set up mentionedlirl), let F(x) be the d.f of a discrete random variablef (x) be its p.m.f.
and letF (x) be the s.f of a distribution, then we can write the s.f of a néstrihution by substituting thi& (x) in (1.5
and we get a new Harris family of s.f by adding a new parangts,

H(x,0,k) = {eﬁ"(x)/[l— (1- e)(F"(x))]}l/k.o <0 <wkeN (1.6)

whereN is the set of positive integers.

2 Harris Discrete Uniform Distribution

Let X follows the discrete uniform distribution with df,(x) = x/aandF (x) = 1— (x/a),x=1,2...a. Then, by adding
new parameter8 andk, by (1.6) we get the s.f of the new distribution as,

H(x 0,k) = 8YX(a—x)/[a — (1 - 8)(a— x)}|V/¥,
x=123...a,0<0 <0 keN (2.1)
whereN is the set of positive integers.
We writeX ~ HDU (a, 8,k), a,k integer> 1, 6 > 0 for the discrete r.v. withd (x) given in €.1).
Remark 2.1We see that when we putkl, HDU(a, 6, k) distribution reduces to MODU(A, 0) distribution (Sandhya and
Prasanth p]) with s.f, _
G(x,0)=06(a—x)/[af+ (1—0)x],x=1,2...a,0 > 0.
From 2.1) it is clear that
Remark 2.2HDU distribution does not possess additive property.

Remark 2.3HDU is not infinitely divisible (i.d) since their support{4,2,3...a} a finite. It is not log convex, since the
class of log convex distribution forms a sub class of thesotds.d. distributions Satheesh, S and Sandhy&]E [

Note: Throughout this paper we have > 0 andk € N whereN is the set of positive integers.

2.1 The p.m.f. of HDU Distribution

The p.m.f of HDU distribution is,
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h(x,0,k) =H(x—1,0,k) —H(x,8,k).
= 0"{[(a—x+1)/[a"~ (1 - 6)(a—x+1)§"/¥
—[(a—x)/[a~ (1-8)(a—x" " },x=1,23,...a (2.2)

Since it is difficult to obtain compact mathematical expi@ss for reliability characteristics and moments for thiscdete

distribution, we numerically evaluate these.

For different values for the parametées 8, k), we plot the graph of the p.m.f. of (Figurel and Figure2). Some are

tabulated (Tabl&) here.

Table1: The p.m.f. ofX ~ HDU (a, 8,k) with a= 20,k = 2.

6|2 0.5

X

1 0.02596117| 0.09317948
2 0.02797983| 0.08179188
3 0.03014582| 0.07299292
4 0.03246097| 0.06604138
5 0.03492407| 0.0604511
6 0.03752991| 0.05589132
7 0.04026831| 0.05213009
8 0.04312304| 0.04900054
9 0.04607084| 0.04638003
10 0.0490805 | 0.04417678
11 0.05211224| 0.04232111
12 0.05511756| 0.04075945
13 0.05803968| 0.03945028
14 0.06081477| 0.03836125
15 0.06337411| 0.03746708
16 0.06564707| 0.03674816
17 0.06756502| 0.03618942
18 0.06906557| 0.0357796
19 0.07009705| 0.03551066
20 0.07062246| 0.03537746

As ‘a’ tends to infinity, the probabilities are becoming infiniteally small as clear from the third figure here.

Also we have

( Lt >H(x, 6.k) = ( Lt >el/k(a—x)/[a"— (1-6)(a—x)¥
( Lt )Gl/k(l—(x/a))/[l—(1—6)(1—
=0 /[1—- (10"
=1

i.e.,H(x, 6,k) tends to 1 asd’ tends toc.

For 6 > 1 the p.m.f. increases withand forf < 1 the p.m.f. decreases with

3 Some Reations between MO Scheme and Harris Scheme

Consider the p.g.f.,

Pi(s) =

0s</(1—(1—

0)s).

(3.1)
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X ~HDU (10, 10, 2) X ~HDU (20, 10, 2) X ~HDU (100, 2,5)
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X ~ HDU (20, 0.25, 5)

Fig. 1: The p.m.f. ofX ~ HDU (a, 6,k) with 6 > 1

X ~HDU (100, 0.25, 5)

X ~HDU (100, 0.05, 5)

1.04 1.0 1.0

0.8 0.8 0.84

0.6+ 0.6 0.6

y y
0.4+ 0.4 0.4
0.2 0.2+ 0.29
N ’
’

0.0+ 1IT T”"'?"Y"T"T 00-""V’o“"ootooovo'onooo 0.04 T ‘..‘.'.“.."”””°""“°'
T T T T T T T T T T T T T T T
5 10 15 20 5 10 15 20 25 5 10 15 20 25 30

X X X

Fig. 2: The p.m.f. ofX ~ HDU (a, 6,k) with 6 < 1

This corresponds to the extended geometrid’ron {k, 2k, 3k...} which has p.m.f.

Now as in the case of defining a s.f in the MO scheme, we can defiesv s.f,

J(x,0) = OF*(x)/[1— B(F*(x))],.k > 1 integer.

Note that wherk = 1, this reduces to the MO scheme.
Now introduce MO extended geometric uniform (MOEGU) r.v{dn2,3...a}, which has s.f,

=6(a—x"/((@)*~(1-8)(a—x"

Now consideiX following HDU distribution.

Then from @.1) its s.f. is,

H(x,0,k) = 8YK@a—x)/[ak— (1— 8)(a— x)K /K,

P(Y=y)=0(1-06)Y,y=k,2k 3k..., when 0< 6 < 1.

(3.2)

(3.3)

J(x.a,68) = 6((a—x)/a)/(1- (1-6)((a—x)/a))

(3.4)

x=1,23...a,0< 0 <o k>0.
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LetY = min(Xy,... Xk), wherex;, i = 1,2,3,...k are independent copies ¥f ~ HDU (a, 6, k).
Then the s.fof is,

P(Y >y) = [P(Yi>y)
= {6Y¥a—x) /[~ (1- ) (a— x|/}
= 6(a—x)"/[a— (1-6)(a—x)"
which is the s.f of MOEGU. Thus we have,

Theorem 3.1min(Xy, ... Xk) follows MOGEU#, a,k), if and only if X,
i=12.. kareiid HDU8,a,k) on{1,2,3...a}.

The following theorem connects MODU and HDU distributions.
Theorem 3.2min(X¥, ... X¥) follows MODUa, 6) if and only if X,i = 1,2,...k are i.i.d HDU(6,a,k) on {1,2,3...a}.

ProofLetY = min(X{, XX, ....X¥). Then

P(Y>y)=P(xlk>y,x2k>y,...,xkk>y)
= P(X>y)k
= [P(X > y"¥)¥
(a—x)

= , which is the s.f of MODU(a, ).
A (1 6)a X He.9

From the s.f oHDU (a, 8,k) in (2.2), the s.f ofX; (evaluated ay*/¥) implies that, the s.P(Y >y) = 8(a—x)/[a— (1—
0)(a—x)] which is the s.f oMODU(a, 8). Hence the proof. Retracing the steps we havg if part.

Generalizing this result we get,

Theorem 3.3Ar.v X has s.f of the forrf2.1) if and only ifmin(X{‘ .. thf) has s.f of the fornil.1), X;,i=1,2,... k are i.i.d
r.V.

ProofWe have the s.f(x, 8,k) = 8YK F(x)/[1— (1 — 8)(F¥(x))]Y/X for Harris family.
LetZ = min (XK, X§,...,X5). Then

Hz(z6,k) =

from (1.1) this s.f of MO scheme of distributions.

4 HDU Distribution asthe Distribution of Minimum of a Sequence of i.i.d. Random Variables

The following theorem gives a characterization of minimufmaosequence of i.i.d. r.vs following discrete uniform

distribution.

Theorem 4.1Let {X;,i > 1} be a sequence of i.i.d. r.vs with commonB(f). Let N be a H(6,k, 1/k) r.v independent

of {X,i > 1} such that PN = n) = Q&E)l/)k)(e)l/k(l_ 0)"-U/K n=11+k, 1+ 2k,...k € N where N is the set of

positive integers) < 8 < «. Let Uy = (1minN)(X;). Then{Uy} is distributed as HDWa, 8, k) distribution if and only if
<i<

{X;} follows discrete uniform distribution+ 1,2,3...a.
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ProofThe s.f ofUy,

= 0YF(x)/[1— (1 O)F (Y with F(x) = (a—x)/a
= 6%¥(a—x)/al/[1- (1- 8)((a—x)/a) V¥,
_ Ql/k(a—x)/[ak— (1- 9)(a—x)k]1/k

which is the s.f of HDU(a, 6, k).
By retracing the steps we have the converse.

5 Hazard Function
Let y (X) be the hazard function of ~ HDU (a, 8, k), then,
W (X) = h(x) /H(x).
= {[6"4(@—x+1)/(@~ (1- 8)(a—x+ 1)/
(0" (a—x)/(a~ (1 8)@a—x" } - 1

=[(a—x+1)/(@a=x){(&~ (1-8)(a—x")/
(@ — (1—0)(a—x+ 1)Kk (5.1)

5.1 Increasing /Decreasing Failure Rate (IFR/DFR)

. . . -2
From (6.1), Comparing hazard function atandx+ 1, we have HDU is IFR whei® > 21 2Xx and DFR when
o< a—2x
2a— 2%

We numerically (Tabl®) and graphically (Figur8) evaluate this.

From Table2 we have,
Remark 5.1The value of the Hazard function is decreasing when the w@fl@ancreasing.

From the graph also we can see that, the failure rate of thebdison is, increasing (IFR) wheé > (a— 2x)/(2a—
2x), decreasing (DFR) whef < (a— 2x)/(2a— 2x).

6 AR (1) Model with HDU Distribution as Marginal Distribution

Considek independent AR(1) sequenc$ n}, i =1,2,...,k, for n> 0 integer and somle > 0, and the structure

b{AXin-1} with probability p
Xi n=— I
|

b{AXin-1} A{/\ & .n-1} with probability (1 — p). 6.1)

The structure@.1), was defined, by Satheeshal.[11]. We now have

Theorem 6.1In an AR (1) process with structué.1), {X n} is stationary with HDU8, a, k) marginal if and only if{ &, }
is distributed as a discrete uniform r.v dd, 2,...a}.
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Table 2: Hazard functiong (x) for X ~ HDU (a, 6, k) with a=20,k=2

X 6|3 1/3 2 0.5 5 0.2 10 0.1

1 0.017846 | 0.150695| 0.026653| 0.102754| 0.010745| 0.241034| 0.005387| 0.442335
2 0.020152| 0.134322| 0.029575| 0.099138| 0.012310| 0.187763| 0.006239| 0.268165
3 0.022850 | 0.123955| 0.032913| 0.097060| 0.014180| 0.159333| 0.007277| 0.202867
4 0.026022| 0.117449| 0.036743| 0.096271| 0.016433| 0.142569| 0.008554 | 0.169857
5 0.029771| 0.113692| 0.041158| 0.096637| 0.019167| 0.132400| 0.010139| 0.151063
6 0.034228| 0.112085| 0.046276| 0.098114| 0.022509| 0.126506| 0.012129| 0.140028
7 0.039561 | 0.112327| 0.052246| 0.100730| 0.026632| 0.123729| 0.014658| 0.133932
8 0.045991| 0.114309| 0.059266| 0.104585| 0.031765| 0.123500| 0.017914| 0.131428
9 0.053808 | 0.118082| 0.067598| 0.109868| 0.038220| 0.125597| 0.022169| 0.131895
10 0.063410| 0.123854| 0.077603| 0.116880| 0.046433| 0.130064| 0.027819| 0.135147
11 0.075350| 0.132025| 0.089795| 0.126089| 0.057016| 0.137193| 0.035458| 0.141344
12 0.090438| 0.143276| 0.104940| 0.138222| 0.070866| 0.147595| 0.045997| 0.151010
13 0.109914| 0.158738| 0.124232| 0.154444| 0.089339| 0.162350| 0.060877| 0.165169
14 0.135803| 0.180349| 0.149653| 0.176721| 0.114610| 0.183361| 0.082475| 0.185688
15 0.171700| 0.211645| 0.184765| 0.208607| 0.150447| 0.214140| 0.114941| 0.216051
16 0.224744 | 0.259744| 0.236693| 0.257237| 0.204159| 0.261786| 0.166190| 0.263339
17 0.311550| 0.341300| 0.322067 | 0.339272| 0.292477| 0.342940| 0.253752| 0.344181
18 0.481948 | 0.506331| 0.490803| 0.504733| 0.465192| 0.507618| 0.428111| 0.508587
19 0.985239| 1.005027| 0.992560| 1.003765| 0.970942| 1.006039| 0.937083| 1.0068

Proof We have,

H(t) = {6F"(bt)/[1— (1— 6)F (bt)} /¥
Let  F(bt)=(a—x)/a,
then, H(t) = {6F (bt)/[1— (1— B)F (bt)}V/K.
— [6¥@a-x)/a] /11 (1- B)((a— X/}

=64 @a—x)/[a"~ (1-8)(a-x""~

SoX 1 isHDU(a, 8,k). We can show the converse by retracing the steps.

7 Expectation, Standard Deviation and Entropy of HDU Random Variable

We numerically compute expectation, standard deviation({&ble3, Table4) and entropy (Tablé) of the HDU r.v with
differenta,k and8. We have,
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. X~HDU (20, 2, 5) X~HDU (20, 5, 2) N X~HDU (20, 0.5, 2)
0,0_,mmmIHHH 0_0_.....,,”1”11]” w_mmmrmIHHHH

T T T T T T
5 10 15 5 10 15

- . :
‘“!HHLHHU‘ hll””,{,””l”[‘ ::I”TIT”TL””UIHNI
N X~HDU (20, 0.1, 5) N X~HDU (20, 0.05, 5) - X~HDU (20.0.01. 5)
. : :
I“IT”I,LTHILHHLH “IIHHTHHUH”H hlznnlrmllmlll

Fig. 3: Hazard function foiX ~ HDU (a, 6,Kk)

Shannon’s Entropy: — Z p(x)logp(x),i=1,2,...,
|

=~ 3 6Y4{[(a—x)/ (@~ (1-8)(a—x¥

~la-x-1)/@~(1-6)(@a-x- 19}
log(6*/*{[(a—x)/(a~ (1 - 6)(@a—x))*
~[(a-x-1)/(@~ (1-6)(a—x-1)}).
From Table3 and Table4, we have,

Remark 7.1f X ~ HDU (a, 8,k), then for all@ > 0, E(X) increases whe# increases.

Remark 7.2In the case of HDWa, 6, k), the sd is decreasing with increasing valuedofvhenf > 1 and increasing with
increasing value 06, whenf < 1.
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Table 3: Expectation and sd of ~ HDU (&, 6,k), 8 < 1, k=2 & with different values of &

0=0.25 0=05 0=075
E(X) Sdx) | E(X) Sdx) | E(X) SdX)

10 | 3.861796| 2.843892| 4.652862| 2.912528| 5.144906| 2.902485
12 | 4.523884| 3.42449 | 5.479514| 3.502731| 6.072462| 3.489097
15 | 5.519222| 4.292872| 6.720372| 4.386299| 7.464119| 4.367621
20 | 7.181154| 5.736697 | 8.789652| 5.856586 | 9.783979| 5.829971
25 | 8.84495 | 7.178379| 10.85965| 7.325473| 12.1041 | 7.29121
30 | 10.50969| 10.50969| 12.93 | 8.793659 | 14.42435| 8.751893
50 | 17.17249| 14.37691| 21.21283| 14.6636 | 23.70586| 14.59241
75 | 25.50389| 21.57098| 31.56745| 21.99891| 35.30814| 21.89138
100 | 33.83625| 28.76394 | 41.92243| 29.33352| 46.91055| 29.18981

a

Table 4: Expectation and sd of ~ HDU (&, 6,k), 8 > 1, k= 2 & with different values of &

0=2 0=5 0=75
E(X) SdX) | E(X) SdX) | E(X) SdX)
10 | 6.350238| 2.724793| 7.392823| 2.397142| 7.803423| 2.219902
12 | 7.523084| 3.274012| 8.777634| 2.880833| 9.272117| 2.668547
15 | 9.281715| 4.096862| 10.85342| 3.605371| 11.47332| 3.340406
20 | 12.21192| 5.466982| 14.31117| 4.811627 | 15.13956 | 4.45873
25 | 15.14161| 6.836327| 17.76779| 6.017109| 18.80434| 5.576207
30 | 18.07105| 8.205286 | 21.22383| 7.222207 | 22.46839| 6.693266
50 | 29.7878 | 13.67958| 35.04576| 12.04107 | 37.12171| 11.15984
75 | 44.43297| 20.52129| 52.32146| 18.0635 | 55.43619| 16.74181
100 | 59.07788| 27.36262| 69.5966 | 24.08555| 73.74994 | 22.32338

A

Remark 7.3The EX) and sdX) for X ~ HDU(a, 0,k) is greater than or equal to the ) and sdX) of
X ~MODU(a,8) for 8 < 1 and is less than or equal to the(K) and sd X) of X ~ MODU(a, 8) for 8 > 1.

LetX ~ HDU (a, 6,k), then the mean, median and mode of the distribution fromufeit), Figure2, Tablel, Table3
and Tabled) for differenta and 6 are computed below (Tabls).
From the Figurel, Figure2, Table5 we have,

Remark 7.4The HDU distribution is positively skewed whér:< 1 since mode< median< mean and the distribution is
negatively skewed wheéh> 1 since mode> median> mean. Also it is to be noted that the distribution is unimodal
i.e., whend < 1the mode=1and wherf > 1 mode= a.

The HDU distribution is therefore a suitable model for, tlgadshowing positive skewness whgn- 1 and the data
showing negative skewness whénrc 1.

Remark 7.5For X ~ HDU (a.8, k) the mean, median and mode increase with ket 1 and decrease with k fa > 1.

Remark 7.6For X ~ HDU (a.0,k) the mean and median are greater than that o£XMODU (a, ) when6 < 1 and less
than that of X~ MODU (a, 8) when6 > 1 (mode is equal in both MODL&, ) and HDU(a, 6, k) distributions).
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Table 5: Mean, median, mode, s.d. and skewness of the HDU distribwiith differenta, 6 andk = 2

k| a 6 mean | median | mode Sd skewness
0.2 | 3.636 3 1 2.80063 | 0.9378863
10 0.5 | 4.652 4 1 2.912528| 1.25419
2 6.350 7 10 2.724793| -1.339464
5 7.392 8 10 2.397142| -1.087619
0.2 | 6.699 5 1 5.657518| 1.007351
2 | 20 0.5 | 8.789 8 1 5.856586| 1.330067
2 | 12.212 13 20 5.466982| -1.424567
5 | 14.311 15 20 4.811627| -1.182309
0.2 | 31.405 21 1 28.38168| 1.071307
100 0.5 | 41.92 37 1 29.33352| 1.395074

2 | 59.077 63 100 | 27.36262| -1.495548
5 | 69.596 75 100 | 24.08555| -1.262308

Now we have the computed values for entropy.

Table 6: Entropy ofX ~ HDU (a, 6, k) with different “a” & “ 6", with k=2

a 6=01 6=0.2 6=025| 6=05 6=2 6=4 6=5 6=10

10 1.797096 | 2.04458 | 2.109813| 2.254229| 2.256818| 2.128346| 2.071995| 1.859359
15 | 2.180142| 2.443605| 2.511336| 2.65915 | 2.66204 | 2.532955| 2.476311| 2.262265
20 | 2.458405| 2.728861| 2.797568| 2.94664 | 2.949637| 2.820337| 2.763589| 2.549047
30 | 2.856328| 3.132525| 3.201971| 3.351967| 3.355042| 3.225588| 3.168766| 2.953867
50 | 3.362921| 3.642403| 3.712243| 3.862721| 3.865836| 3.736303| 3.679444| 3.464362
100 | 4.054183| 4.335145| 4.405155| 4.555839| 4.55897 | 4.429404| 4.372528| 4.157369

From table6 it is observed that,
Remark 7.7The entropy of %~ HDU (a, 6, k) is approximately equal to the entropy of~XHDU (a,1/6, k).

Remark 7.8The entropy of X~ HDU (a, 0,k) is always greater than or equal to the entropy ofXMODU((a, 8) for all
0.

8 Maximum Likelihood Estimates (MLE) of the Parameters of HDU (a, 0, k)

Let x1,X2,...,Xn be a random sample frotdDU (a, 6,k). Then from @.2) we write the likelihood functiorL of the
distribution. By partial differentiation df w.r.toa, 8 andk and equating them to zero we formulate 3 non-linear equstion
We can numerically find (with the help of mathematica) the Mif, 6 andk as the solution of these non-linear equations.
But here the maximum of the range of observationa.iSo MLE of the parametes, (2) is the largest value of the
observations. Then substituting the MLEaoih the remaining two equations we find MLE 6fandk.

9 An Application of HDU

Example 91A travel agency in Palakkad city (Kerala, India) arrange iminxury trips (19 seats) to Cochin (another town
about 150 Kms from Palakkad) on all days excluding Sunddys.bboking status (vacancies) was observed from their
database on the day before the scheduled date (since theyekiag arrangement and announcing their trip status before
12 hours so that if the booking status is very less, they wil their trips.) (data collected in each 50 days).
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Table 7: Observed frequencie®; — the number of vacancies in each day

Oi 0 1 213/4|5/6|7(8|9|10|11|12| 13|14 | 15| 16| 17| 18| 19

Year 2010-11

Apr-May 9 6|1(2|3}2(3|3|2|1 |1 |1 |1 1|2 |1 |2 ]2 |1
June-July 10 3134332141 1 1 0 1 0 1 3 2 2
Aug-Sep 7 |2(6|1|1|2|2|1|2|3 |2 |2 |3 |0 |1 (4|0 |1 |12
Oct-Nov 9 |10|5|1|3|2|0|1(2|3|0 |1 |2 |1 |2 (3|3 ]2 |0]O0
Dec-Jan 2011| 10 | 6 41412|11]3|2|1]|5]2 1 2 1 2 0 2 1 1 0
Feb-Mar 0|6 |2|5(2|2|3|1|2|2|4 |0 |2 |0 |0 |2 |3 |1 |0 |3
Apr-May 10 | 4 5141333 |1(1(2]0 2 1 1 1 0 3 1 1 4
June-July 9 6 412151312 |2|1]|0 4 2 3 0 2 0 3 0 0
Aug-Sep 10| 9 112|13|3|5|1|1]2|1 2 3 1 0 1 1 2 1 1

Let X be the number of vacancies in each day plus one unit and assusi¢DU (a, 6,k). i.e.,x=1,2,3...20.
We arbitrarily fix 4 terms, and the MLE’s are computed.

Table 8: The MLE of 6 andk (Sample size = 50, MLE dd, &8 = max(x) = 20) 4 months

Month June-July| Feb-March| Apr-May | Aug-Sep| Mean SE
MLE 6 0.1993 0.1733 0.186 0.1854 | 0.186 | 0.01738
MLE k 2.688 3.270 2.970 2.9113 | 2.9598| 0.04314
k rounded 3 3 3 3 3

Table 9: Mean, median and mode of the data in the selected months.

a Month MLE of =6 | mean| median | mode Sd skewness
June-July 0.1993 7.3 5 1 6.060528 | 1.036695
20 Feb-March 0.1733 7.36 5 1 6.0721 | 1.047414
Apr-May 0.186 7.68 5 1 5.124217| 1.303614
Aug-Sep 0.1854 6.54 5 1 5.978997| 1.093829

Here mode< median< mean the distribution is is positively skewed. From remark then HDU distribution is
supposed to apply for, the data showing positive skewnessi@/h< 1. Assume that the data follows HDU distribution.
Sample size = 50, MLE of, &= max(x) = 20 and estimate d{ roundedk = 3. Initially we fit the MODU distribution
to the data.

The Chi-square test is used to test the goodness of fit of gidldition with level of significancer = 0.05. The
expected frequencies are calculatBd=€ N « h(x;, a, 6,k) = 50 h(x;, 20, @,R) fori =1,2,...20). Then found the value
of x? statistics and observed the degrees of freedom (d.f). Thétseare tabulated below.

Result: From thep-values it is seen that HDU distribution is a better fit than M®distribution in this situation.
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Table 10: Goodness of fit of MODU and HDU distribution witln = 0.05

Distribution June-July| Feb-Mar | Apr-May | Aug-Sep
X2 statistics | 12.807 17.157 19.449 | 11.1659
MODU d.f 6 6 6 6
p-value 0.0462 0.0087 0.0035 0.0834
X2 statistics 5.688 5.2 6.2715 5.98572
HDU d.f 7 7 7 7
p-value 0.5766 0.6356 0.5084 0.5414
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