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Abstract: Construction of iterative algorithms for approximatingaes of non-linear operators has been studied extensivelyei
literature. In this paper, we compared two iterative sclemé&oduced and studied independently by Chidume and [gitand
Chidumeet al.[4] for approximating zeroes of bounded- accretive operators and found that one of the schemes iseffmient than
the other.
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1 Introduction existence, is the so-called proximal point algorithm
introduced by Martinefl0] and studied further by
Many problems in applications can be modelled in theRockafellar 2] and a host of other authors. More
form 0 € Ax, where for exampleA: H — 2" is a  precisely, giverx € H, an approximation of a solution of
monotone operator, i.e., A satisfies the following (1), the proximal point algorithm generates the next

inequality: (u—v,x—y) > 0Vu e Ax, ve Ay, x,y € H. iteratex. 1 by solving the following equation

Typical example where monotone operators occur and

satisfy the inclusion @& Ax include the equilibrium state X1 = (14 iA)‘l(xk) + &, 2)
of evolution equations and critical points of some Ak

functionals defined on Hilbert spaceHH. Let
f:H — (—o,4+o] be a proper, lower-semicontinuous
convex function, then, it is known (see, MInf|or
Rockafellar 2] ) that the multi-valued map := df, the
subdifferential of f, is maximal monotone, where for
weH,

whereAy > 0 is a regularizing parameter. If the sequence
{A}k-, is bounded above, then the resulting sequence
{X«}_, of proximal point iterates converges weakly to a
solution of (), provided that a solution exists
(Rockafellar[L?)). Rockafellar then posed the following
question:

Q1. Does the proximal point algorithm always converge

0 af(x) <= f(y)— F(x) > (y—xw) VyeH strongly?

<= x € Argmin(f — (., w)). This question was resolved in the negative by Gulr [

In this case, the solutions of the inclusior @ f (x), ifany, ~ Who produced a proper, closed convex funct@mn the
corresponds to the critical points bfwhich are exactlyits ~ infinite dimensional Hilbert spacd, for which the

minimizers. proximal point algorithm converges weakly but not
In general, consider the following problem: strongly, see alsd]. This raised the following question:
Q2. Can the proximal point algorithm be modified to
Findu € H such that Gz Au (1) guarantee strong convergence?

whereH is a real Hilbert space anélis an m-monotone It is clear that the proximal point algorithn2); even if it
operator (defined below) omd. One of the classical converges strongly, is not convenient to use. This is
algorithms for approximating a solution of)( assuming because at each step of the iteration process, one has to
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(Bt >
[ee]
g =0, YhoaAn <

compute (I + A—lkA)‘l(xk) and this is certainly not (3),1|i_r,720
convenient. Consequently, Chidume and Dji2§ gosed

the following question, which perharps, is more important Suppose that the equatidx = 0 has a solution. Then,
thanQ2. there exists a constayg > 0 such that ifon < yp6, ¥ n >

) ) ) ) 1, {xa} converges strongly to a solution of the equation
Q3. Can an iteration process be developed which will notax — 0.

involve the computation ofl + A—lkA)*l(xk) at each step
of the iteration process and which will guarantee strong
convergence to solution of)?

Remark.We note that 2-uniformly smooth Banach spaces
includeL  spaces, X p < o but do notincludé.; spaces,
l<p<2

With respect toQ2, many authors have modified the Inspired by Theorem CD 2], Chidume et al.[4]
proximal point algorithm to guarantee strong convergencdntroduced a recursive sequence and proved that it
under different settings, see for instance (Solodov and-onverges strongly to a zero of—accretive operator in

SvaiterL3], Kamimura and Takahash§], H. K. Xu[14], uniformly smooth Banach spaces which include

Lehdili and Moudafi] and the references therein) 2—uniformly smooth Banach spaces and claimed that
their recursive sequence stmpler than that of Theorem
P : : : CD. To prove their results, they employed the two
Another modification of the proximal point algorithm, . 4
P : ; celebrated theorems of Simeon ReicH,([11]).
perhaps the most significant, which yields strong Before stating the result of Chidunet al.[4], we first

convergence, is implicitly contained in the following present the result of Reich which was used in Chideme
theorem of Reich. al.[4]

Theorem Reich (S. Reich, 1]) Let E be a real uniformly
Definition 1.For a nonlinear operator A with domain ~ Smooth Banach space. Then, there exists a nondecreasing

D(A), we denote by N(A), the set of zeros of A. That is ;:o”ntinluous fléf:_CtiO”B 0 [0,0) — [0,0) satisfying the
N(A) := D(A) : Ax = 0}. Qowmgcon Itons:
)= XD A=) () B(ct) < c(t) Vo > 1.

Theorem 1.1(Reich,[L1]) Let E be a real uniformly (i) lim B(t) =0 and
smooth Banach space amd: D(A) C E — E be an =0t
accretive mapping with cl(D(A)) convex. Suppoge Tyl < [1X[12 -+ 2Redy. i (X)) 4 1 VX VEE.
satisfies the range conditioR C R(l +SA) V § > 0. x4y < || -e<y,J(X)> max{ |||, }HyHB(HyH). xye
Suppose that @ R(A), then for eachx € D, the strong Theorem C (Chidumeet al.[4]) Let E be a uniformly
limit lim s, JXx exists and belongs td(A). If we denote ~ smooth real Banach space andNeE — E be a bounded

lims ;e JX by Qx thenQ: D — N(A) is the unique sunny accretive map which satisfies the range condition. For

nonexpansive retraction & ontoN(A). arbitrary x; € E, let the sequencex,} be iteratively
defined by
Remark.We mention here that in response @2, all Xnt1 i=Xn — AnA%y — An(Xn — X1), N> 1, 4)

modifications of the classical proximal point algorithm to ) , L ,
obtain strong convergence involved the computation Ofwher.e?{)\n}.lsasequence if0, 1) satisfying the following
inverse of some operators at each step of the process. ~ conditions:

In the case thaf is maximal monotone and bounded, W)limAn = 0;
Chidume and Djitte 7] gave an affirmative answer 193 o
by proving the following important theorem. The reader (D3n=1An =0, .
can also se€9].

Suppose that the equatidx = 0 has a solution. Then,
Theorem CD (Chidume and Djitte [2]. Let E be a  there exists a constap > 0 such that if3(An) < yo ¥V n >
2-uniformly smooth real Banach space anddete — E 1, (wheref is the one appearing in Theorem Reic{®,}
be a bounded m-accretive map. For arbitragye E, converges strongly to a solution of the equatfon= 0.

define the sequende} iteratively by Remark.Let A: H — H be monotone map. A is called
X1 = X — AAXe — AnBr(Xe — X1). N> 1 3 m-monotone ifR(l + AA) = H for someA > 0. It is well
et n = A = Anbh(a —0), N21, - (3) known that if A is m—monotone, it satisfies the range

where{An} and{6,} are sequences {i®, 1) satisfyingthe  condition, that is,R(l + AA) = H for all A > 0 (see,

following conditions: Chidume and DjitteZ] ).

(Dlim 6, = 0; and{6,} is decreasing; Motivated by the claim of Chidumet al.[4] and the
ongoing research in this direction, it is our purpose in this

(2)S 1 Anbn =0, An=0(6h); note to compare the two algorithms used in Theorem CD

and Theorem C.
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2 Main Result Table 1:

Let E = R the set of real numbers andl : E — E be

Convergence of x(n+1l) and z(n+1) with their
corresponding errors

! . L Number of iterati +1 +1 +1 +1
defined byAx :.tanhx. Observe tth =R is uniformly Lt leralon ® 3F334)2 (Z)_(334)2 X(”O_o)sig“” Z(%,ngmr
smooth andA is monotone, continuous and bounded. 2 0.0506 | 0.0420|  0.0506 0.0420
Hence it is m—accretive (see 7). Furthermore, 3 0.0501) 00417 0.0501 0.0417
0 € N(A), the set of zeroes oA. ConsequentlyE and A : e AT R0
satisfy the hypotheses of Theorem CD and Theorem G 5 50500 00389 0.0500 00389
respectively. 7 0.0500 | 0.0382| 0.0500 0.0382
We also note thap, — —* 6, = —L _ satisfy the 8 0.0500 | 0.0375]  0.0500 0.037

" (s fy 9 0.0500 | 0.0369| _ 0.0500 0.0369
conditions required o, and 6, in Theorem CD and 10 0.0500| 0.0364| 0.0500 0.0364
Theorem C. E E : E E
We now re- state without proof, Theorem CD and 18 0.0500| 0.0333] 0.0500 0.0333
Theorem C using the above parameters. Next, w 19 0.0500] 0.0333| 0.0500 0.0333
implement the algorithms using MATLAB. The table 2_0 0'0_500 0'0_327 0'0_500 0'0_327
below and the corresponding graphs were obtained. : : : f :
27 0.0500 | 0.0311| 0.0500 0.0311
. 28 0.0500 | 0.0309 |  0.0500 0.0309
Theorem CD Let E =R and letA: E — E be as defined - - - - -
above. For arbitraryz; € E, let the sequencéz,} be 1 : : 3 :
iteratively defined by 49 0.0500 | 0.0280| 0.0500 0.0280
: 50 0.0500 | 0.0279 |  0.0500 0.0247
Zoi1 =2 — —t—tanhz) - —t 53—t (zo—2z1), n>1 5 : 5 : E
(n+1)8 (n+1)5 (n+1)4 % 0.0500 | 0.0246 | 0.0500 0.0246
(5) 99 0.0500 | 0.0246| 0.0500 0.0246
Then, there exists a constang > 0 such that if 100 0.0500| 0.0246| 0.0500 0.0246
An) < Wby V n> 1 {z} converges strongly to,0a
solution of the equatiodz = 0. Theorem CLetE =R
and letA: E — E be as defined above. For arbitrary
x1 € E, let the sequencex,} be iteratively defined by 0.1
1
Xn1=Xn— —— tanh(xy) - ——5 (X —X1), n>1. 0.09
(n+1)5 (n+1)5
| . ©) o
Then, there exists a constgpt> 0 such that if3 (An) < Yo,
{Xn} converges strongly to,& solution of the equation
Ax=0. 0.07
. 0.06
3 Conclusion
(). From table {) and the graphs in Figurel), we o0
deduce the following facts;
(a) the iterative scheme of Theorem C converged faster 0.04 AN
than that of Theorem CD to,@ zero of the operatoh,. \
(b) the iterative scheme of Theorem CD gave a better g3 ~_
approximation of 0 a zero of the operatoA than the T
iterative scheme of Theorem C. This suggests that the
algorithm of Theorem CD is preferred to that of Theorem %% 10 20 30 40 50 80 70 80 90 100

C in approximating zero oA..

(c). Another fact discovered which is common to the two
algorithms, though not reflected in the graphs is that the
closer the initial point is to Othe better approximation of
0, one obtains. (ii). The result obtained above is for a
particular operator. It is of interest to analytically \fgri
that the facts established here are true in general.

(iii). For further studies, we shall check if the result of

Fig. 1: Graphs of x(n+1), z(n+1) & x(n+1) with z(n+1)
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