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Abstract: Construction of iterative algorithms for approximating zeroes of non-linear operators has been studied extensively in the
literature. In this paper, we compared two iterative schemes introduced and studied independently by Chidume and Djite[2] and
Chidumeet al.[4] for approximating zeroes of boundedm− accretive operators and found that one of the schemes is moreefficient than
the other.
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1 Introduction

Many problems in applications can be modelled in the
form 0 ∈ Ax, where for example,A : H → 2H is a
monotone operator, i.e., A satisfies the following
inequality: 〈u − v,x − y〉 ≥ 0 ∀u ∈ Ax, v ∈ Ay, x,y ∈ H.
Typical example where monotone operators occur and
satisfy the inclusion 0∈ Ax include the equilibrium state
of evolution equations and critical points of some
functionals defined on Hilbert spacesH. Let
f : H → (−∞,+∞] be a proper, lower-semicontinuous
convex function, then, it is known (see, Minty[7] or
Rockafellar [12] ) that the multi-valued mapT := ∂ f , the
subdifferential of f , is maximal monotone, where for
w ∈ H,

0∈ ∂ f (x) ⇐⇒ f (y)− f (x)≥ 〈y− x,w〉 ∀ y ∈ H

⇐⇒ x ∈ Argmin( f −〈.,w〉).

In this case, the solutions of the inclusion 0∈ ∂ f (x), if any,
corresponds to the critical points off , which are exactly its
minimizers.
In general, consider the following problem:

Find u ∈ H such that 0∈ Au (1)

whereH is a real Hilbert space andA is an m-monotone
operator (defined below) onH. One of the classical
algorithms for approximating a solution of (1), assuming

existence, is the so-called proximal point algorithm
introduced by Martinet[10] and studied further by
Rockafellar [12] and a host of other authors. More
precisely, givenxk ∈ H, an approximation of a solution of
(1), the proximal point algorithm generates the next
iteratexk+1 by solving the following equation

xk+1 = (I +
1
λk

A)−1(xk)+ ek, (2)

whereλk > 0 is a regularizing parameter. If the sequence
{λk}

∞
k=1 is bounded above, then the resulting sequence

{xk}
∞
k=1 of proximal point iterates converges weakly to a

solution of (1), provided that a solution exists
(Rockafellar[12]). Rockafellar then posed the following
question:
Q1. Does the proximal point algorithm always converge
strongly?

This question was resolved in the negative by Guller [3]
who produced a proper, closed convex functionG in the
infinite dimensional Hilbert spacel2 for which the
proximal point algorithm converges weakly but not
strongly, see also [8]. This raised the following question:
Q2. Can the proximal point algorithm be modified to
guarantee strong convergence?

It is clear that the proximal point algorithm (2), even if it
converges strongly, is not convenient to use. This is
because at each step of the iteration process, one has to
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compute (I + 1
λk

A)−1(xk) and this is certainly not
convenient. Consequently, Chidume and Djitte [2] posed
the following question, which perharps, is more important
thanQ2.

Q3. Can an iteration process be developed which will not
involve the computation of(I + 1

λk
A)−1(xk) at each step

of the iteration process and which will guarantee strong
convergence to solution of (1)?

With respect toQ2, many authors have modified the
proximal point algorithm to guarantee strong convergence
under different settings, see for instance (Solodov and
Svaiter[13], Kamimura and Takahashi [5], H. K. Xu[14],
Lehdili and Moudafi[6] and the references therein)

Another modification of the proximal point algorithm,
perhaps the most significant, which yields strong
convergence, is implicitly contained in the following
theorem of Reich.

Definition 1.For a nonlinear operator A with domain
D(A), we denote by N(A), the set of zeros of A. That is
N(A) := {x ∈ D(A) : Ax = 0}.

Theorem 1.1(Reich,[11]) Let E be a real uniformly
smooth Banach space andA : D(A) ⊆ E → E be an
accretive mapping with cl(D(A)) convex. SupposeA
satisfies the range conditionD ⊆ R(I + sA), ∀ s > 0.
Suppose that 0∈ R(A), then for eachx ∈ D, the strong
limit lim s→∞ JA

s x exists and belongs toN(A). If we denote
lims→∞ JA

s x by Qx thenQ : D → N(A) is the unique sunny
nonexpansive retraction ofD ontoN(A).

Remark.We mention here that in response toQ2, all
modifications of the classical proximal point algorithm to
obtain strong convergence involved the computation of
inverse of some operators at each step of the process.

In the case thatA is maximal monotone and bounded,
Chidume and Djitte [2] gave an affirmative answer toQ3
by proving the following important theorem. The reader
can also see [9].

Theorem CD (Chidume and Djitte [2]. Let E be a
2-uniformly smooth real Banach space and letA : E → E
be a bounded m-accretive map. For arbitraryx1 ∈ E,
define the sequence{xn} iteratively by

xn+1 := xn −λnAxn −λnθn(xn − x1), n ≥ 1, (3)

where{λn} and{θn} are sequences in(0,1) satisfying the
following conditions:

(1)limθn = 0; and{θn} is decreasing;

(2)∑∞
n=1λnθn = ∞, λn = o(θn);

(3) lim
n→∞

(
θn−1

θn
−1)

λnθn
= 0, ∑∞

n=1 λ 2
n < ∞

Suppose that the equationAx = 0 has a solution. Then,
there exists a constantγ0 > 0 such that ifαn ≤ γ0θn ∀ n ≥
1, {xn} converges strongly to a solution of the equation
Ax = 0.

Remark.We note that 2-uniformly smooth Banach spaces
includeLp spaces, 2≤ p<∞ but do not includeLp spaces,
1< p < 2.

Inspired by Theorem CD [2], Chidume et al.[4]
introduced a recursive sequence and proved that it
converges strongly to a zero ofm−accretive operator in
uniformly smooth Banach spaces which include
2−uniformly smooth Banach spaces and claimed that
their recursive sequence issimpler than that of Theorem
CD. To prove their results, they employed the two
celebrated theorems of Simeon Reich ([1], [11]).
Before stating the result of Chidumeet al.[4], we first
present the result of Reich which was used in Chidumeet
al.[4].

Theorem Reich (S. Reich, [1]) Let E be a real uniformly
smooth Banach space. Then, there exists a nondecreasing
continuous functionβ : [0,∞) → [0,∞) satisfying the
following conditions:
(i) β (ct)≤ cβ (t) ∀c ≥ 1,
(ii) lim

t→0+
β (t) = 0 and

||x+y||2≤ ||x||2+2Re〈y, j(x)〉+max
{

||x||,1
}

||y||β (||y||) ∀x,y∈E.

Theorem C (Chidumeet al.[4]) Let E be a uniformly
smooth real Banach space and letA : E → E be a bounded
accretive map which satisfies the range condition. For
arbitrary x1 ∈ E, let the sequence{xn} be iteratively
defined by

xn+1 := xn −λnAxn −λn(xn − x1), n ≥ 1, (4)

where{λn} is a sequence in(0,1) satisfying the following
conditions:

(1)limλn = 0;

(2)∑∞
n=1 λn = ∞, .

Suppose that the equationAx = 0 has a solution. Then,
there exists a constantγ0 > 0 such that ifβ (λn)≤ γ0 ∀ n ≥
1, (whereβ is the one appearing in Theorem Reich),{xn}
converges strongly to a solution of the equationAx = 0.

Remark.Let A : H → H be monotone map. A is called
m-monotone ifR(I +λ A) = H for someλ > 0. It is well
known that if A is m−monotone, it satisfies the range
condition, that is,R(I + λ A) = H for all λ > 0 (see,
Chidume and Djitte [2] ).

Motivated by the claim of Chidumeet al.[4] and the
ongoing research in this direction, it is our purpose in this
note to compare the two algorithms used in Theorem CD
and Theorem C.
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2 Main Result

Let E = R the set of real numbers andA : E → E be
defined byAx = tanhx. Observe thatE = R is uniformly
smooth andA is monotone, continuous and bounded.
Hence it is m−accretive (see [7]). Furthermore,
0 ∈ N(A), the set of zeroes ofA. Consequently,E andA
satisfy the hypotheses of Theorem CD and Theorem C
respectively.
We also note thatλn = 1

(n+1)
3
5
, θn = 1

(n+1)
1
4

satisfy the

conditions required onλn and θn in Theorem CD and
Theorem C.
We now re- state without proof, Theorem CD and
Theorem C using the above parameters. Next, we
implement the algorithms using MATLAB. The table
below and the corresponding graphs were obtained.

Theorem CD Let E = R and letA : E → E be as defined
above. For arbitraryz1 ∈ E, let the sequence{zn} be
iteratively defined by

zn+1 = zn −
1

(n+1)
3
5

tanh(zn)−
1

(n+1)
3
5

1

(n+1)
1
4
(zn − z1), n ≥ 1.

(5)
Then, there exists a constantγ0 > 0 such that if
λn) ≤ γ0θn ∀ n ≥ 1, {zn} converges strongly to 0, a
solution of the equationAz = 0. Theorem C Let E = R

and let A : E → E be as defined above. For arbitrary
x1 ∈ E, let the sequence{xn} be iteratively defined by

xn+1 = xn−
1

(n+1)
3
5

tanh(xn)−
1

(n+1)
3
5

(xn−x1), n≥ 1.

(6)
Then, there exists a constantγ0 > 0 such that ifβ (λn)< γ0,

{xn} converges strongly to 0, a solution of the equation
Ax = 0.

3 Conclusion

(i). From table (1) and the graphs in Figure (1), we
deduce the following facts;
(a) the iterative scheme of Theorem C converged faster
than that of Theorem CD to 0, a zero of the operator,A.
(b) the iterative scheme of Theorem CD gave a better
approximation of 0, a zero of the operatorA than the
iterative scheme of Theorem C. This suggests that the
algorithm of Theorem CD is preferred to that of Theorem
C in approximating zero ofA..
(c). Another fact discovered which is common to the two
algorithms, though not reflected in the graphs is that the
closer the initial point is to 0, the better approximation of
0, one obtains. (ii). The result obtained above is for a
particular operator. It is of interest to analytically verify
that the facts established here are true in general.
(iii). For further studies, we shall check if the result of
this paper is true in spaces of higher dimension and with
different operators.

Table 1: Convergence of x(n+1) and z(n+1) with their
corresponding errors

Number of iteration (n) x(n+1) z(n+1) x(n+1) error z(n+1) error
1 0.0342 0.0342 0.0342 0.0342
2 0.0506 0.0420 0.0506 0.0420
3 0.0501 0.0417 0.0501 0.0417
4 0.0500 0.0407 0.0500 0.0407
5 0.0500 0.0397 0.0500 0.0397
6 0.0500 0.0389 0.0500 0.0389
7 0.0500 0.0382 0.0500 0.0382
8 0.0500 0.0375 0.0500 0.037
9 0.0500 0.0369 0.0500 0.0369

10 0.0500 0.0364 0.0500 0.0364
...

...
...

...
...

18 0.0500 0.0333 0.0500 0.0333
19 0.0500 0.0333 0.0500 0.0333
20 0.0500 0.0327 0.0500 0.0327
...

...
...

...
...

27 0.0500 0.0311 0.0500 0.0311
28 0.0500 0.0309 0.0500 0.0309
...

...
...

...
...

49 0.0500 0.0280 0.0500 0.0280
50 0.0500 0.0279 0.0500 0.0247
...

...
...

...
...

98 0.0500 0.0246 0.0500 0.0246
99 0.0500 0.0246 0.0500 0.0246

100 0.0500 0.0246 0.0500 0.0246

.

Fig. 1: Graphs of x(n+1), z(n+1) & x(n+1) with z(n+1)
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