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Abstract: Integrals involving a variety of special functions have been developed by many authors. Also many interesting integral
formulas associated with the Bessel function of the first kind have been established. Very recently, Agarwal et al. presented two
interesting integrals involving the Bessel function of thefirst kind, which are expressed in terms of generalized (Wright) hypergeometric
functions. In a similar way, in this paper, we establish two another new interesting integral formulas involving the generalized Bessel
functions, which are also expressed in terms of generalized(Wright) hypergeometric functions. Further, some specialcases of our main
results are also considered.
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1 Introduction

Integrals involving a variety of special functions have
been developed by many authors (see [9], [10], [11], [15],
see also [8] and [14]). A number of integrals involving the
product of Bessel functions play an important role in
several diverse field of physics, such as in neutrons
physics, palasma physics and radio physics etc. In the
present paper, we present two new generalized integral
formulas involving the generalized Bessel functions,
which are expressed in terms of the generalized (Wright)
hypergeometric functions. Further, some interesting
special cases of our main results are also considered.

A useful generalizationwb
ν,c(z) of the Bessel function

of the first kind is defined forz ∈ C\{0} andb,c,ν ∈ C
with ℜ(ν)>−1 as follows (see [8]):

wb
ν,c(z) =

∞

∑
k=0

(−c)k (z/2)ν+2k

k! Γ (ν + k+ 1+b
2 )

, (1.1)

whereC denotes the set of complex numbers,Γ (z) is the
familiar Gamma function andwb

ν,c(0) = 0.

If we consider c = b = 1 in (1.1) then wb
ν,c(z)

becomes the Bessel function of the first kindJν(z) and if

we considerc = −1 and b = 1 in (1.1) thenwb
ν,c(z)

reduces to the modified Bessel function of purely
imaginary argumentIν(z). Similarly, if we considerc = 1
andb = 2 in (1.1) thenwb

ν,c(z) reduces to2 jν√
π , while, if

we considerc = −1 andb = 2 thenwb
ν,c(z) becomes2iν√

π .

Also, wb
ν,c(z) can be reduces in terms of cosine and sine

functions as follows (see [13]):

(i) On settingν =− b
2 and replacingc by c2 in (1.1), we

get

wb
− b

2 , c2(z) =

(

2
z

)
b
2 coscz√

π
. (1.2)

(ii) On settingν = − b
2 and replacingc by −c2 in (1.1),

we get

wb
− b

2 , −c2(z) =

(

2
z

)
b
2 coshcz√

π
. (1.3)

(iii) On settingν = 1− b
2 and replacingc by c2 in (1.1),

we get

wb
1− b

2 , c2(z) =

(

2
z

)
b
2 sincz√

π
. (1.4)

∗ Corresponding author e-mail:ghayas.maths@gmail.com

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/sjm/030203


64 N. U. Khan, M. Ghayasuddin: A new class of integral formulas associated...

(iv) On settingν = 1− b
2 and replacingc by−c2 in (1.1),

we get

wb
1− b

2 , −c2(z) =

(

2
z

) b
2 sinhcz√

π
. (1.5)

The generalization of the generalized hypergeometric
seriespFq (1.9) is due to Fox [1] and Wright ([3], [4], [5])
who studied the asymptotic expansion of the generalized
(Wright) hypergeometric function defined by (see [7,
p.21])

pΨq





(α1 , A1), ....., (αp , Ap);

(β1 , B1), ....., (βq , Bq);
z



 =
∞
∑

k=0

p
∏

j=1
Γ (α j +A j k)

q
∏

j=1
Γ (β j +B j k)

zk

k!
, (1.6)

where the coefficientsA1, · · · ,Ap and B1, · · · ,Bq are
positive real numbers such that

1+
q

∑
j=1

B j −
p

∑
j=1

A j ≥ 0. (1.7)

A special case of (1.6) is

pΨq





(α1 , 1), ....., (αp , 1);

(β1 , 1), ....., (βq , 1);
z



 =

p
∏

j=1
Γ (α j )

q
∏

j=1
Γ (β j )

pFq





α1, ....., αp ;

β1, ....., βq ;
z



 , (1.8)

where pFq is the generalized hypergeometric series
defined by (see [6, section 1.5])

pFq





α1, ....., αp ;

β1, ....., βq ;
z



=
∞
∑

n=0

(α1)n · · ·(αp)n
(β1)n · · ·(βq)n

zn

n!
= pFq(α1, · · · ,αp ; β1, · · ·βq ; z), (1.9)

where(λ )n, is called the Pochhammer’s symbol [2].

For our present investigation, the following interesting
and useful result due to Lavoie and Trottier [12] will be
required

∫ 1

0
xα−1 (1− x)2β−1

(

1− x
3

)2α−1(

1− x
4

)β−1
dx =

(

2
3

)2α Γ (α) Γ (β )
Γ (α +β )

, (1.10)

(ℜ(α) > 0 andℜ(β )> 0)

2 Main results

Two generalized integral formulas which have been
established in this section, are expressed in terms of
generalized Wright hypergeometric function with suitable
arguments in the integrands.

Theorem 2.1. The following integral formula holds true:
For ρ , σ , ν, b, c ∈ C with ℜ(ρ + σ) > 0, ℜ(ν) >
−(1+b

2 ), ℜ(ρ +ν)> 0 andx > 0,

∫ 1

0
xρ+σ−1 (1− x)2ρ−1

(

1− x
3

)2(ρ+σ)−1(

1− x
4

)ρ−1
wb

ν,c
(

y
(

1− x
4

)

(1− x)2
)

dx

=

(

2
3

)2(ρ+σ) ( y
2

)ν
Γ (ρ +σ)1Ψ2





(ρ +ν,2);

(ν + 1+b
2 ,1), (2ρ +σ +ν,2);

− cy2

4



 . (2.1)

Proof. In order to derive (2.1), we denote the left-hand side
of (2.1) by I, expressingwb

ν,c as a series with the help of
(1.1) and then interchanging the order of integral sign and
summation, which is verified by uniform convergence of
the involved series under the given conditions, we get

I =
∞
∑

k=0

(−c)k (y/2)ν+2k

k! Γ (ν + k+ 1+b
2 )

∫ 1

0
xρ+σ−1 (1−x)2(ρ+ν+2k)−1

(

1− x
3

)2(ρ+σ)−1 (

1− x
4

)ρ+ν+2k−1
dx.

(2.2)

Now using the result (1.10) in (2.2), we get

I =

(

2
3

)2(ρ+σ) ( y
2

)ν
Γ (ρ +σ)

∞
∑

k=0

Γ (ρ +ν +2k)

Γ (ν + 1+b
2 + k) Γ (2ρ +σ +ν +2k)

(− cy2
4 )k

k!
, (2.3)

which upon using (1.6), yields (2.1). This completes the
proof of Theorem 2.1.

Theorem 2.2. The following integral formula holds true:
For ρ , σ , ν, b, c ∈ C with ℜ(ρ + σ) > 0, ℜ(ν) >
−(1+b

2 ), ℜ(ρ +ν)> 0 andx > 0,

∫ 1

0
xρ−1 (1− x)2(ρ+σ)−1

(

1− x
3

)2ρ−1(

1− x
4

)ρ+σ−1
wb

ν,c

(

xy
(

1− x
3

)2
)

dx

=

(

2
3

)2(ρ+ν) ( y
2

)ν
Γ (ρ +σ)1Ψ2





(ρ +ν,2);

(ν + 1+b
2 ,1), (2ρ +σ +ν,2);

− 4cy2

81



 . (2.4)

Proof. It is easy to see that a similar argument as in the
proof of Theorem 2.1 will establish the integral formula
(2.4).

Next we consider other variations of Theorems 2.1
and 2.2. In fact, we establish some integral formulas for
the generalized Bessel functionwb

ν,c(z) expressed in
terms of the generalized hypergeometric functionpFq.

Corollary 2.1. Let the conditions of Theorem 2.1 be
satisfied andρ + σ , ρ + ν ∈ C\Z−

0 . Then the following
integral formula holds true:

∫ 1

0
xρ+σ−1 (1− x)2ρ−1

(

1− x
3

)2(ρ+σ)−1(

1− x
4

)ρ−1
wb

ν,c
(

y
(

1− x
4

)

(1− x)2
)

dx

=

(

2
3

)2(ρ+σ) ( y
2

)ν Γ (ρ +σ) Γ (ρ +ν)
Γ (ν + 1+b

2 ) Γ (2ρ +σ +ν)

×2F3









( ρ+ν
2

)

,
( ρ+ν+1

2

)

;

(

ν + 1+b
2

)

,
(

2ρ+σ+ν
2

)

,
( ρ+σ+ν+1

2

)

;

− cy2

4









. (2.5)

Corollary 2.2. Let the conditions of Theorem 2.2 be
satisfied andρ + σ , ρ + ν ∈ C\Z−

0 . Then the following
integral formula holds true:

∫ 1

0
xρ−1 (1− x)2(ρ+σ)−1

(

1− x
3

)2ρ−1(

1− x
4

)ρ+σ−1
wb

ν,c

(

xy
(

1− x
3

)2
)

dx

=

(

2
3

)2(ρ+ν) ( y
2

)ν Γ (ρ +σ) Γ (ρ +ν)

Γ (ν + 1+b
2 ) Γ (2ρ +σ +ν)

×2F3









( ρ+ν
2

)

,
( ρ+ν+1

2

)

;

(

ν + 1+b
2

)

,
(

2ρ+σ+ν
2

)

,
( ρ+σ+ν+1

2

)

;

− 4cy2

81









. (2.6)
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Proof. In order to proof (2.5), using the results
(λ )n =

Γ (λ+n)
Γ (λ ) and(λ )2n = 22n(λ

2 )n(
λ+1

2 )n (n ∈ N0), in
(2.3) and summing the given series with the help of (1.9),
we easily arrive at right-hand side of (2.5). This
completes the proof of Corollary 2.1. Similarly, it is easy
to see that a similar argument as in proof of Corollary 2.1
will establish the Corollary 2.2.

Remark 1. Setting b = c = 1 in (2.1), (2.4), (2.5) and
(2.6) and adjusting the parameters, we easily get
equations (2.1), (2.3), (2.6) and (2.7) which are known
integral formulas involving Bessel functionsJν(z) of
Agarwal et al. [14]. Further, on settingb = 1 andc = −1
in (2.1), (2.4), (2.5) and (2.6) and adjusting the
parameters, we obtain new integral formulas involving the
Modified Bessel functionsIν(z).

3 Special cases

In this section, we establish certain new integral formulas
for the cosine and sine functions.

Corollary 1. The following integral formula holds true:
For ρ , σ , b ∈C with ℜ(ρ)> b

2, ℜ(ρ +σ)> 0, ℜ(2ρ +

σ)> b
2 andx > 0,

∫ 1

0
xρ+σ−1 (1− x)2ρ−b−1

(

1− x
3

)2(ρ+σ)−1(

1− x
4

)ρ− b
2−1

cos
(

cy
(

1− x
4

)

(1− x)2
)

dx

=
√

π
(

2
3

)2(ρ+σ)
Γ (ρ +σ)1Ψ2







(ρ − b
2 ,2);

( 1
2 ,1), (2ρ +σ − b

2 ,2);

− c2y2

4






. (3.1)

Corollary 2. The following integral formula holds true:
For ρ , σ , b ∈C with ℜ(ρ)> b

2, ℜ(ρ +σ)> 0, ℜ(2ρ +

σ)> b
2 andx > 0,

∫ 1

0
x
ρ− b

2−1
(1− x)2(ρ+σ)−1

(

1− x
3

)2ρ−b−1(

1− x
4

)ρ+σ−1
cos

(

cxy
(

1− x
3

)2
)

dx

=
√

π
(

2
3

)2ρ−b
Γ (ρ +σ)1Ψ2







(ρ − b
2 ,2);

( 1
2 ,1), (2ρ +σ − b

2 ,2);

− 4c2y2

81






. (3.2)

The above two corollaries can be established with the
help of Theorems 2.1 and 2.2 by settingν = − b

2, c is
replacing byc2 and then using (1.2).

Corollary 3. The following integral formula holds true:
For ρ , σ , b ∈C with ℜ(ρ)> b

2, ℜ(ρ +σ)> 0, ℜ(2ρ +

σ)> b
2 andx > 0,

∫ 1

0
xρ+σ−1 (1− x)2ρ−b−1

(

1− x
3

)2(ρ+σ)−1 (

1− x
4

)ρ− b
2−1

cosh
(

cy
(

1− x
4

)

(1− x)2
)

dx

=
√

π
(

2
3

)2(ρ+σ)
Γ (ρ +σ)1Ψ2







(ρ − b
2 ,2);

( 1
2 ,1), (2ρ +σ − b

2 ,2);

c2y2

4






. (3.3)

Corollary 4. The following integral formula holds true:
For ρ , σ , b ∈C with ℜ(ρ)> b

2, ℜ(ρ +σ)> 0, ℜ(2ρ +

σ)> b
2 andx > 0,

∫ 1

0
x
ρ− b

2−1
(1− x)2(ρ+σ)−1

(

1− x
3

)2ρ−b−1(

1− x
4

)ρ+σ−1
cosh

(

cxy
(

1− x
3

)2
)

dx

=
√

π
(

2
3

)2ρ−b
Γ (ρ +σ)1Ψ2







(ρ − b
2 ,2);

( 1
2 ,1), (2ρ +σ − b

2 ,2);

4c2y2

81






. (3.4)

The above two corollaries can be established with the
help of Theorems 2.1 and 2.2 by settingν = − b

2, c is
replacing by−c2 and then using (1.3).

Corollary 5. The following integral formula holds true:
For ρ , σ , b ∈ C with ℜ(ρ + σ) > 0, ℜ(ρ) >
b
2 −1, ℜ(2ρ +σ)> b

2 −1 andx > 0,

∫ 1

0
xρ+σ−1 (1− x)2ρ−b−1

(

1− x
3

)2(ρ+σ)−1 (

1− x
4

)ρ− b
2−1

sin
(

cy
(

1− x
4

)

(1− x)2
)

dx

=
√

π
( y

2

)

(

2
3

)2(ρ+σ)
Γ (ρ +σ)1Ψ2







(ρ − b
2 +1,2);

( 3
2 ,1), (2ρ +σ − b

2 +1,2);

− c2y2

4






. (3.5)

Corollary 6. The following integral formula holds true:
For ρ , σ , b ∈ C with ℜ(ρ + σ) > 0, ℜ(ρ) >
b
2 −1, ℜ(2ρ +σ)> b

2 −1 andx > 0,

∫ 1

0
x
ρ− b

2−1
(1− x)2(ρ+σ)−1

(

1− x
3

)2ρ−b−1(

1− x
4

)ρ+σ−1
sin

(

cxy
(

1− x
3

)2
)

dx

=
√

π
( y

2

)

(

2
3

)2ρ−b+2
Γ (ρ +σ)1Ψ2







(ρ − b
2 +1,2);

( 3
2 ,1), (2ρ +σ − b

2 +1,2);

− 4c2y2

81






. (3.6)

The above two corollaries can be established with the
help of Theorems 2.1 and 2.2 by settingν = 1− b

2, c is
replacing byc2 and then using (1.4).

Corollary 7. The following integral formula holds true:
For ρ , σ , b ∈ C with ℜ(ρ + σ) > 0, ℜ(ρ) >
b
2 −1, ℜ(2ρ +σ)> b

2 −1 andx > 0,

∫ 1

0
xρ+σ−1 (1− x)2ρ−b−1

(

1− x
3

)2(ρ+σ)−1 (

1− x
4

)ρ− b
2−1

sinh
(

cy
(

1− x
4

)

(1− x)2
)

dx

=
√

π
( y

2

)

(

2
3

)2(ρ+σ)
Γ (ρ +σ)1Ψ2







(ρ − b
2 +1,2);

( 3
2 ,1), (2ρ +σ − b

2 +1,2);

c2y2

4






. (3.7)

Corollary 8. The following integral formula holds true:
For ρ , σ , b ∈ C with ℜ(ρ + σ) > 0, ℜ(ρ) >
b
2 −1, ℜ(2ρ +σ)> b

2 −1 andx > 0,

∫ 1

0
x
ρ− b

2−1
(1− x)2(ρ+σ)−1

(

1− x
3

)2ρ−b−1(

1− x
4

)ρ+σ−1
sinh

(

cxy
(

1− x
3

)2
)

dx

=
√

π
( y

2

)

(

2
3

)2ρ−b+2
Γ (ρ +σ)1Ψ2







(ρ − b
2 +1,2);

( 3
2 ,1), (2ρ +σ − b

2 +1,2);

4c2y2

81






. (3.8)
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The above two corollaries can be established with the
help of Theorems 2.1 and 2.2 by settingν = 1− b

2, c is
replacing by−c2 and then using (1.5).

Remark 2. On settingb = c = 1 in (3.1), (3.2), (3.5) and
(3.6), we see that these results reduces to the known results
(3.2), (3.3), (3.7) and (3.8) of Agarwal et al. [14]. Also, we
notice that forν = − b

2, c replaced byc2 and−c2 in (2.5)
and (2.6) and then using (1.2) and (1.3) respectively, we
will obtain some interesting integral formulas. Further, for
ν = 1− b

2, c replaced byc2 and−c2 in (2.5) and (2.6)
and then using (1.4) and (1.5) respectively, we may obtain
some more interesting integral formulas.

4 Concluding Remarks

In the present paper, we have investigated some new
integral formulas involving the generalized Bessel
function wb

ν,c(z), which are expressed in terms of
generalized (Wright) hypergeometric functions. Also, it
can be easily seen thatJν (z), Iν(z),

2 jν√
π and 2iν√

π are

special cases of the generalized Bessel functionwb
ν,c(z).

Therefore, the results presented in this paper are easily
converted in terms of various Bessel functions after some
suitable parametric replacements. Bessel functions are
associated with a wide range of problems in diverse areas
of mathematical physics, for example, neutrons physics,
plasma physics and radio physics etc. So the results
presented in this paper may be applicable in the theory of
mathematical physics.
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