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1 Introduction

In the last years one may see a strong development of theytbédifferential equations and inclusions of fractionadler
[1,2,3]. The main reason is that fractional differential equasiamne very useful tools in order to model many physical
phenomena. For the last achievements on fractional cal@nd fractional differential equations we refer the reader
[4].In the fractional calculus there are several fractiorexivchtives. From them, the fractional derivative introdddy
Caputo in p], allows to use Cauchy conditions which have physical megsiRecently, several qualitative results for
fractional integro-differential equations were obtaine{b, 7,8,9].

This paper is concerned with integro-differential inctrss of fractional order

DEX(t) € F(t,x(1),V(X)(1)) ae ([0,2), x(0)=x), X(0)=x, 1)

wherep € (1,2], DE denotes Caputo’s fractional derivatie; [0,0) x R x R — Z2(R) is a multifunction andko,x; €
R.V : C([0,»),R) — C([0,»),R) is a nonlinear \Volterra integral operator defined\bx)(t) = 5 k(t,s x(s))ds with
k(.,.,.) :[0,0) x R x R — R a given function.

In the present note we prove that the set of selections of th&functionF that correspond to the solutions of problem
(1) is aretract oL}OC([O, ), R). Our main hypothesis is that the multifunction is Lipschitith respect to the second and
third variable and the proof uses a well known selectiontiecdue to Bressan and Colomld@]which gives continuous
selections for multifunctions that are lower semicontinsiand with decomposable values.

We point out that in the classical case of differential isébins several qualitative properties of solutions exists i
the literature 11,12,13]. On one hand, our result may be seen as a generalizationTdfexirem 3.4 in14] proved for
problems defined on bounded intervals and on the other hd&wedy&m 1 below is a generalization to fractional framework
of the main theorem in1[3].

2 Preliminaries

In what follows| :=[0,T], T > 0, .Z(l) is the o-algebra of all Lebesgue measurable subsetsaofd (X, |.|) is a real
separable Banacl&(l, X) denotes the space of continuous functiand — X with the norm|x|c = sup, |x(t)| and
L1(1,X) denotes the space of integrable functigng — X with the norm|x|; = fOT [x(t)|dt.

The distance between a poixe X and a subsef C X is defined byd(x,A) = inf{|x— a|;a € A} and Pompeiu-
Hausdorff distance between the closed subseBsC X is defined bydy (A, B) = max{d*(A,B),d*(B,A)}, d*(A,B) =
sup{d(a,B); ac A}.
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Z(X) denotes the family of all nonempty subsets of X and wittX) the family of all Borel subsets of. ForAC |
with xa(.) : 1 — {0,1} we describe the characteristic functionfofFinally, for anyA C X cl(A) is its the closure.

By definition a subsed c L*(1,X) itis decomposabliéfor any u,v € D and any subsét € .2 (1) one hasixa+Vxs €
D, whereB =I\A.

We use the notatiom (1, X) for the family of all decomposable closed subsetk'df, X).

In the next two result$S,d) is a separable metric space. By definition a set-valued Fhap — #(X) is said to
be lower semicontinuous (l.s.c.) if for any closed sul3et X, the subse{s e S, H(s) C G} is closed. The next two
Lemmas are proved irL[)].

Lemma 2.1.Consider F : | x S— £(X) a set-valued map with closed valugg(l) ® #(S)-measurable and Ft,.) is
l.s.c. for any te I.
Then the set-valued map:t6— Z(l,X) defined by

H(s)={f e L}Y(1,X); f(t)eF*(t,s) ae (1)}
is |.s.c. with nonempty closed values if and only if therstexa continuous mapping: & — L*(I,X) such that
d(0,F*(t,s)) <q(s)(t) ae(l),VseS

Lemma 2.2.Consider F: S— 2(I,X) be a l.s.c. set-valued map with closed decomposable vahedeay : S —
LY(1,X), @:S— L(I,R) be continuous mappings such that the set-valued mag = Z(1,X) given by

H(s) =cl{f(.)eF(s) [ft)-d()OI<@(9(t) ae ()}

has nonempty values.
Then H admits a continuous selection, i.e. there exisS+ L1(I,X) continuous with ts) € H(s) Vse S

Definition 2.3.[1]. a) The fractional integral of order p- 0 of a Lebesgue integrable functidn (0,«) — R is defined

by
ap-1
|Pf(t):/ot%f(s)ds

provided the right-hand side is pointwise defined @) and/l (.) is the (Euler’s) Gamma function defined by p) =
Jo tP-te tdt.
b) Caputo’s fractional derivative of order p 0 of a functionf : [0,) — R is defined by

ﬁ/ot(t—s)‘p*”‘lfm)(s)ds

wheren = [p] + 1. It is assumed implicitly that is n times differentiable whose-th derivative is absolutely continuous.

DEf(t) =

Definition 2.4. A mappingx € C([0,»),R) is said to be a solution of problem (1) if there exibts L ([0,%),R) with
h(t) € F(t,x(t),V(X)(t)), a.e [0,o) satisfyingDEx(t) = h(t) a.e. [0,%) andx(0) = X, X (0) = X;.
In the next section we are concerned with the following ssbeigited to problem (1).

A(t) = o+ txy + J§ ST “h(u)du,
7 (%0,x1) = {he LL (]0,%0),R); h(t) € F(t,h(t),V(h)(t)) ae [0,0)}.

loc

3 The Result

Hypothesis 3.1.) The set-valued map(F.) : [0,0) x R x R = Z(R) is Z(]|0,»)) ® (R x R) measurable and has
nonempty closed values.

i) For almostallte I, the set-valued map(, .,.) is L(t)-Lipschitz in the sense that there exists)lc Lt ([0,%),R)
with

dh (F (t,x1,y1), F(t,%2,¥2)) <L) (X0 —X2| + |[y1 —Y2|) V¥ X1,%2,¥1,¥2 € R.

iii) There exists a locally integrable functiof. i€ Li .([0,%),R) such that

dn ({0}, F(t,0,V(0)(1))) <q(t) a.e ([0,e)).
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iv) k(.,.,.) 1 [0,00) x R x R — Ris a function such thatx € R, (t,s) — Kk(t,s,x) is measurable.
V) |k(t,s,x) —k(t,;sy)| <L(t)x—y| ae (t,s) €[0,%) x[0,%),VxyeR.

We use next the following notations

M(t) ::L(t)(1+/OtL(u)du), tel, |IPM|:= sup [IPM(t)].

te[0,0)
ﬁ(t):xo+tx1+/otal__(7$)r;_lh(s)ds ue LY(1,R), (3)
do(h)(t) = [h(t)| +q(t) + L(t)|(A(t)] +/Ot L(s)[h(s)|ds), tel (4)
Let us note that . .
d(h(t),F(t,h(t),V(h)(t)) < qo(h)(t) a.e () (5)

and for anyug,up € L1(I,R)
|do(h) — do(h2)[1 < (1+ [IPM(T)[)[hy — hay;
therefore, the mapping : L1(1,R) — L*(I,R) is continuous.
Also define _ _
A (x0,x) = {heL*(1,R); h(t) e F(t,h(t),V(h)(t)) ae (1)}

k
k=[0K. k=1 |= [ hofdt, hel(R).
0
The proof of the next result may be find ih4].

Lemma 3.2.Suppose that Hypothesis 3.1 is verified and consjget!(I,R) — L(I,R) a continuous function with
@(h) =hforallh € .# (xo,%1). Ifh € L(I,R), we put

W(h)={heL'(,R); h(t)eF(tah)®),V(eh)n) ae ()},

h} ifhe J(xo,x1),
@(h) = { ;{p(}h) Iotheerwils(t;(O .

Then the set-valued map: L1(1,R) — 2(L(I,R)) is I.s.c. with nonempty closed and decomposable values.

Theorem 3.3.Assume that Hypothesis 3.1 is satisfied, there efidt$| < 1 and »,x; € R.
Then there exists GLE([0,%),R) — Lt ([0,%0),R) continuous with the properties

() G(h) € .#(x0,x1), Vhe Lk ([0,),R),
(i) G(hy=h, Yhe #(x,x).

Proof. The idea of the proof consists in the construction, for every 1, of a sequence of continuous functions
g¢: L1(I,R) — LY(Iy, R) satisfying the following conditions

() gi(h)=h, Vhe 7, (xo0,x)

(I g*(h) € A (x0.x1), VYheL(I,R)

() g“(h)(t) =g Hhli ) (), tels

If this construction is realized, we introdu@e: L{ ([0,),R) — L.

G(h)(t) = g*(h,)(t), k> 1.

([0,%),R) with

The continuity ofgX(.) and (lll) allow to deduce tha6(.) is continuous. Taking into account (I), for eabhe
Llloc([oa 00)7 R)! we get

G(h)i (t) = g“(hli)(t) € Fi (X0, x1), VK> 1,
which shows thaG(h) € .7 (X, X1).
Considere > 0 andm > 0. We defineem, = %e. If he L(I1,R) andm> 0 we put

ag(h)(t) = [h(t)| +a(t) + L) (IA(t)] +/0t|-(8)|ﬁ(8)ld5)7 telh
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and
1 (h) = [IPM]™ (ﬁlqo( )11+ Emi1)-

Since the ma}(.) = go(.) is continuous, we find thag}, : L(11,R) — LY(I1,R) is also continuous.
Setgi(h) = h. In what follows, we show that for any > 1 there existst, : L1(11,R) — L(I1,R) continuous with the
properties

gh(h)=h, Vhe 7, (x0,), (a0)

gL (h)(1) € F(tgh L (N, V(gh L)1) ae (), (by)

G h)(t) — gb(h) (1) < ;M (®) +&0 ae (1y), (c1)

G — g (O] <M)Gh () ae (), m>2. (dh)

If he LY(I1,R), we define

Wl(h)={f e L}(11,R); f(t) e F(t,h(t),V(h(t))(t)) ae(l1)},
[ {h} ifhe A (X0, %),
i (h) = { wl(h) otherwilse '
We apply Lemma 3.2 (witlp(h) = h) and we deduce th@wll :LY(11,R) — 2(11,R) is |. s. c. Using (5) we obtain that the

set
Hi(h) =cl{f € ®i(u); [f(t)—ht)|<gph)(t)+& ae (1)}
is not empty for anyr € L(I1,R). We apply the Lemma 2.2 to obtain a selectg';imf Hl1 which is continuous and verifies

(an)-(ca).
Assume thagil(.), i = 1,...msatisfying @;)-(d1) are already constructed. Therefore, from Hypothesis 1(bil
(d1) we infer

e~ —~— e~ -

d(gm(h) (®), F (t, gx(n) 1),V (gh(h) (1) < LO)(|g5 1 (N)(1) — gh(h) (D)]+
JLS)IgE 1 ()(S) ~ Gh(M(9]ds) < MO)]IPMIgh(h) = ME)(Gh, 1 (h) — Sn) < M(t)ah, 1 ().

wheresy := || PM|™(em+1 — &m) > 0.
Forh e LY(11,R), we put

(6)

—_~

W) ={f e LY(1L,R); f(t) € F(t,gh(h)(t).V(gh(h) (1) ae (1)},

ol (h) _ {h} ifhe zl(xo,xl),
m+1 Wl . (h) otherwise

Again, Lemma 3.2 (applied fop(h) = g&,(h)) allows to conclude thatD&Hl(.) is is l.s.c. with nonempty closed
decomposable values. At the same time, from (&)4fL*(11,R), the set

Haa(h) =cl{f € g1 (h);  [F(t) — ghya(N)()] <M(B)am,a(h) ae (1)}

is nonempty. As above, via Lemma 2.2, it is obtained a seiagﬁprl of H! ms1 continuous with &)-(dy).
We conclude that

g1 (M) = gi(h)12 < [1PM|T (ﬁl%( M11+€)
which means that the sequerl{a;%1 }meN is a Cauchy sequence in the Banach spdch,R). Takeg!(h) € L1(14,R)
its limit. Since the mapping — |g5(h)|1.1 is continuous, thus it is locally bounded and the Cauchy itimmdis satisfied
by {g&(h) }men locally uniformly Wlth respect td. Thereforeg!(.) : L*(I1,R) — LY(13,R) is continuous.
Taking into accountd) we find thatgt(h) = h, Vvhe A, (Xo,x1) and from the hypotheses that the value$ aire
closed andlf;) we find that

—_— e~

g'(h)(t) € Ft,g (), V(gHh)(1), ae(l) vhel'(ILR).
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At the final step of the induction procedure we assumegtfat: L1(1;,R) — L1(1;,R), i = 2,...,k— 1 are constructed
and satisfying (1)-(Il) and We construgl‘( ) LY(Ik, R) — L(I,R) continuous with (1)- (III)
We introduce the magf : L*(Ix,R) — LY(Ix,R)

g6(h) () = g (Nl 1) (O 2 +hOXi (1) (7)

Sincegk~1(.) is continuous and fdng, h € L*(Iy,R) we have

k
195(1) — (o) 1. < 16 (Rl ) — (Mol s+ [ (D)~ ho(t)

and we deduce thaf(.) is continuous.
At the same time, the equali&*l(h) =h, Vhe 7, _,(Xo,x1) and (7) allow to obtain
g5() =h, vhe ., (xo,%1).

Forh e L(Iy,R), we define

—_

Wi(h) = {1 € L*(1R); 1(8) = g (Nl ) (0)X1 1 (6) +n(t) X0, (1), () € F(Eg(h) (1), V(g5(h)) (1)) a.e ((k—1,K)}

{h} if he A, (X0, %),
i (h) = { WK(h) otherwise

Once again Lemma 3.2 (applied fg(h) = g§(h)) implies that®¥(.) : L(I,R) — 2(I,R) is I.s.c.. In addition, if
h € L1(lx,R) one may write

—_—— e~ —_— e~

d(gh(t), F (t, g(h) (1), V(g§(h))(t)) = d(h(t), F (t,g(h) (1), V (g§(h) (1)) Xt . < as()(t)  ae (Ik), (8)
where

as(h)(t) = [h(t)| +a(t) + |go |+/ L(s (s)[ds).
Obviously,gf : L1 (Ix,R) — L(Ix,R) is continuous. Ifn > 0 we define
. KP—
Omsa(n) = [1PM]™ (—( )|%( M1kt Emi1)-

and from the continuity off§(.) we deduce the continuity af;, : L*(Ix,R) — L(Ix,R).
Finally, we provide the existence gf, : L*(Ix,R) — L1(lx,R) continuous such that

g (M(O) = G2l ) Ve ey, (a)

gha(h) =h Vhe .7 (xo,x), (%)

g () (1) € F(t g, (D). V(g (1) ae (), ()
) ®) — gM O] < At ®) & ae (). ()
) () — g (MO <MD 4(h) ae (), m=>2 ()

Set
Hi(h) =cl{f € @(h); |f(t) - g5 ()| <ash)(t) +& ae (I}
Using (8),H}(h) # 0 for anyh € L(11, R). Taking into account Lemma 2.2 and the fact that the g are continuous
we find a continuous selectigj of HX with (ax)-(dk).
If g&(.), i = 1,...mwith (a)-(es)are already constructed, from) one may write

d(gih(h) (1), F (t g (h) (1), V (gh(n) (1)) < L) (11 (M) (1) — dla() (0)]+ )
LI, 1 () (5) — g5 (M (S)]ds) < M) (e, 1 (F) — Sm) < M(t)gl, 3 (M),
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wheresy := || PM|™(ém+s1 — &m) > 0.
Forh ¢ L1(lx,R), we define

W) = {1 € LY R); 1) = 01l _) 1, (0+
()X (0, () € F gm0V (@M)1) ae (k-1K)}

k ~[{h}  ifhe A (xox),
Pma(h) = { Wk 1 (h) otherwise

Applying Lemma 3.2 it is obtained thdor';,+1(.) (LY (1, R) — 2(LY(1x,R)) has nonempty closed decomposable values
andisl.s.c.. As above, the set

Hia(h) = cl{f € &1 (N); [f(t) — gy ()] <MB)as () ae ()} hel'(R)

is nonempty. Again, Lemma 2.2 allows to obtain a continumhf.‘sc:):.iongﬁ1+1 of H,';H, verifying (ax)-(&).

By (&) one has

k k P m kPt
[9mi2 (M) = gm(M) |2k < [1PM] [mlqo(h)lme]-

Repeating the proof done in the first case we get the conveega{gs,(h) }men to someg¥(h) € L1(Ix,R). Moreover,
g“(.) : LY(I,R) — L1(l, R) is continuous.

By (ax) we have that

g)(t) =g (i )E) VEe e,

by (bx) gk(h) =hvhe A, (%0,%1) and, finally, since the values &fare closed, fromd) we deduce that

—_— e~

g“(h)(t) € F(t, gk () (1), V(gk(h)(1), ae (k) Yhel'(iR),
and the proofis complete.

Remark 3.4.By definition, a subspac¥ of a Hausdorff topological spadéis said to be a retract of if there exists a
mappingh: Y — X continuous witth(x) = X, ¥x € X.
So, Theorem 3.3 states that for eaghx; € R, the set? (xo,x1) is a retract of the Banach spagg. ([0, «), R).
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