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1 Introduction

In the last years one may see a strong development of the theory of differential equations and inclusions of fractional order
[1,2,3]. The main reason is that fractional differential equations are very useful tools in order to model many physical
phenomena. For the last achievements on fractional calculus and fractional differential equations we refer the readerto
[4].In the fractional calculus there are several fractional derivatives. From them, the fractional derivative introduced by
Caputo in [5], allows to use Cauchy conditions which have physical meanings. Recently, several qualitative results for
fractional integro-differential equations were obtainedin [6,7,8,9].

This paper is concerned with integro-differential inclusions of fractional order

Dp
cx(t) ∈ F(t,x(t),V(x)(t)) a.e. ([0,∞)), x(0) = x0, x′(0) = x1, (1)

wherep∈ (1,2], Dp
c denotes Caputo’s fractional derivative,F : [0,∞)×R×R → P(R) is a multifunction andx0,x1 ∈

R. V : C([0,∞),R) → C([0,∞),R) is a nonlinear Volterra integral operator defined byV(x)(t) =
∫ t

0 k(t,s,x(s))ds with
k(., ., .) : [0,∞)×R×R→ R a given function.

In the present note we prove that the set of selections of the multifunctionF that correspond to the solutions of problem
(1) is a retract ofL1

loc([0,∞),R). Our main hypothesis is that the multifunction is Lipschitzwith respect to the second and
third variable and the proof uses a well known selection theorem due to Bressan and Colombo [10] which gives continuous
selections for multifunctions that are lower semicontinuous and with decomposable values.

We point out that in the classical case of differential inclusions several qualitative properties of solutions exists in
the literature [11,12,13]. On one hand, our result may be seen as a generalization of ofTheorem 3.4 in [14] proved for
problems defined on bounded intervals and on the other hand, Theorem 1 below is a generalization to fractional framework
of the main theorem in [13].

2 Preliminaries

In what follows I := [0,T], T > 0, L (I) is theσ -algebra of all Lebesgue measurable subsets ofI and(X, |.|) is a real
separable Banach.C(I ,X) denotes the space of continuous functionsx : I → X with the norm|x|C = supt∈I |x(t)| and
L1(I ,X) denotes the space of integrable functionsx : I → X with the norm|x|1 =

∫ T
0 |x(t)|dt.

The distance between a pointx ∈ X and a subsetA ⊂ X is defined byd(x,A) = inf{|x− a|;a ∈ A} and Pompeiu-
Hausdorff distance between the closed subsetsA,B ⊂ X is defined bydH(A,B) = max{d∗(A,B),d∗(B,A)}, d∗(A,B) =
sup{d(a,B); a∈ A}.
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P(X) denotes the family of all nonempty subsets of X and withB(X) the family of all Borel subsets ofX. ForA⊂ I
with χA(.) : I → {0,1} we describe the characteristic function ofA. Finally, for anyA⊂ X cl(A) is its the closure.

By definition a subsetD⊂ L1(I ,X) it is decomposableif for any u,v∈D and any subsetA∈L (I) one hasuχA+vχB∈
D, whereB= I\A.

We use the notationD(I ,X) for the family of all decomposable closed subsets ofL1(I ,X).
In the next two results(S,d) is a separable metric space. By definition a set-valued mapH : S→ P(X) is said to

be lower semicontinuous (l.s.c.) if for any closed subsetG ⊂ X, the subset{s∈ S; H(s) ⊂ G} is closed. The next two
Lemmas are proved in [10].

Lemma 2.1.Consider F∗ : I ×S→ P(X) a set-valued map with closed values,L (I)⊗B(S)-measurable and F∗(t, .) is
l.s.c. for any t∈ I.

Then the set-valued map H: S→ D(I ,X) defined by

H(s) = { f ∈ L1(I ,X); f (t) ∈ F∗(t,s) a.e. (I)}

is l.s.c. with nonempty closed values if and only if there exists a continuous mapping q: S→ L1(I ,X) such that

d(0,F∗(t,s))≤ q(s)(t) a.e. (I), ∀s∈ S.

Lemma 2.2.Consider F: S→ D(I ,X) be a l.s.c. set-valued map with closed decomposable values and let ψ : S→
L1(I ,X), φ : S→ L1(I ,R) be continuous mappings such that the set-valued map H: S→ D(I ,X) given by

H(s) = cl{ f (.) ∈ F(s); | f (t)−ψ(s)(t)|< φ(s)(t) a.e. (I)}

has nonempty values.
Then H admits a continuous selection, i.e. there exists h: S→ L1(I ,X) continuous with h(s) ∈ H(s) ∀s∈ S.

Definition 2.3. [1]. a) The fractional integral of order p> 0 of a Lebesgue integrable functionf : (0,∞)→ R is defined
by

I p f (t) =
∫ t

0

(t − s)p−1

Γ (p)
f (s)ds,

provided the right-hand side is pointwise defined on(0,∞) andΓ (.) is the (Euler’s) Gamma function defined byΓ (p) =∫ ∞
0 t p−1e−tdt.

b) Caputo’s fractional derivative of order p> 0 of a functionf : [0,∞)→ R is defined by

Dp
c f (t) =

1
Γ (n− p)

∫ t

0
(t − s)−p+n−1 f (n)(s)ds,

wheren= [p]+1. It is assumed implicitly thatf is n times differentiable whosen-th derivative is absolutely continuous.

Definition 2.4. A mappingx∈C([0,∞),R) is said to be a solution of problem (1) if there existsh∈ L1
loc([0,∞),R) with

h(t) ∈ F(t,x(t),V(x)(t)), a.e. [0,∞) satisfyingDp
cx(t) = h(t) a.e. [0,∞) andx(0) = x0,x′(0) = x1.

In the next section we are concerned with the following set associated to problem (1).

h̃(t) = x0+ tx1+
∫ t
0
(t−u)p−1

Γ (p) h(u)du,

S (x0,x1) = {h∈ L1
loc([0,∞),R); h(t) ∈ F(t, h̃(t),V(h̃)(t)) a.e. [0,∞)}.

(2)

3 The Result

Hypothesis 3.1.i) The set-valued map F(., .) : [0,∞)×R×R → P(R) is L ([0,∞))⊗B(R×R) measurable and has
nonempty closed values.

ii) For almost all t∈ I, the set-valued map F(t, ., .) is L(t)-Lipschitz in the sense that there exists L(.)∈ L1
loc([0,∞),R+)

with
dH(F(t,x1,y1),F(t,x2,y2))≤ L(t)(|x1− x2|+ |y1− y2|) ∀ x1,x2,y1,y2 ∈ R.

iii) There exists a locally integrable function q(.) ∈ L1
loc([0,∞),R) such that

dH({0},F(t,0,V(0)(t)))≤ q(t) a.e. ([0,∞)).
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iv) k(., ., .) : [0,∞)×R×R→ R is a function such that∀x∈ R, (t,s)→ k(t,s,x) is measurable.
v) |k(t,s,x)− k(t,s,y)| ≤ L(t)|x− y| a.e. (t,s) ∈ [0,∞)× [0,∞), ∀x,y∈ R.

We use next the following notations

M(t) := L(t)(1+
∫ t

0
L(u)du), t ∈ I , |I pM| := sup

t∈[0,∞)

|I pM(t)|.

h̃(t) = x0+ tx1+
∫ t

0

(t − s)p−1

Γ (p)
h(s)ds, u∈ L1(I ,R), (3)

q0(h)(t) = |h(t)|+q(t)+L(t)|(|h̃(t)|+
∫ t

0
L(s)|h̃(s)|ds), t ∈ I (4)

Let us note that
d(h(t),F(t, h̃(t),V(h̃)(t))≤ q0(h)(t) a.e. (I) (5)

and for anyu1,u2 ∈ L1(I ,R)
|q0(h1)−q0(h2)|1 ≤ (1+ |I pM(T)|)|h1−h2|1;

therefore, the mappingq0 : L1(I ,R)→ L1(I ,R) is continuous.
Also define

SI (x0,x1) = {h∈ L1(I ,R); h(t) ∈ F(t, h̃(t),V(h̃)(t)) a.e. (I)}.

Ik = [0,k], k≥ 1, |h|1,k =
∫ k

0
|h(t)|dt, h∈ L1(Ik,R).

The proof of the next result may be find in [14].

Lemma 3.2.Suppose that Hypothesis 3.1 is verified and considerφ : L1(I ,R) → L1(I ,R) a continuous function with
φ(h) = h for all h∈ SI (x0,x1). If h∈ L1(I ,R), we put

Ψ (h) = {h∈ L1(I ,R); h(t) ∈ F(t, φ̃(h)(t),V(φ̃(h))(t)) a.e. (I)},

Φ(h) =

{
{h} if h ∈ TI (x0,x1),
Ψ(h) otherwise.

Then the set-valued mapΦ : L1(I ,R)→ P(L1(I ,R)) is l.s.c. with nonempty closed and decomposable values.

Theorem 3.3.Assume that Hypothesis 3.1 is satisfied, there exists|I pM|< 1 and x0,x1 ∈ R.
Then there exists G: L1

loc([0,∞),R)→ L1
loc([0,∞),R) continuous with the properties

(i) G(h) ∈ S (x0,x1), ∀h∈ L1
loc([0,∞),R),

(ii) G(h) = h, ∀h∈ S (x0,x1).

Proof. The idea of the proof consists in the construction, for everyk ≥ 1, of a sequence of continuous functions
gk : L1(Ik,R)→ L1(Ik,R) satisfying the following conditions

(I) gk(h) = h, ∀h∈ SIk(x0,x1)

(II) gk(h) ∈ SIk(x0,x1), ∀h∈ L1(Ik,R)

(III) gk(h)(t) = gk−1(h|Ik−1)(t), t ∈ Ik−1

If this construction is realized, we introduceG : L1
loc([0,∞),R)→ L1

loc([0,∞),R) with

G(h)(t) = gk(h|Ik)(t), k≥ 1.

The continuity ofgk(.) and (III) allow to deduce thatG(.) is continuous. Taking into account (II), for eachh ∈
L1

loc([0,∞),R), we get
G(h)|Ik(t) = gk(h|Ik)(t) ∈ TIk(x0,x1), ∀k≥ 1,

which shows thatG(h) ∈ T (x0,x1).
Considerε > 0 andm≥ 0. We defineεm = m+1

m+2ε. If h∈ L1(I1,R) andm≥ 0 we put

q1
0(h)(t) = |h(t)|+q(t)+L(t)(|h̃(t)|+

∫ t

0
L(s)|h̃(s)|ds), t ∈ I1
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and

q1
m+1(h) = |I pM|m(

1
Γ (p)

|q1
0(h)|1,1+ εm+1).

Since the mapq1
0(.) = q0(.) is continuous, we find thatq1

m : L1(I1,R)→ L1(I1,R) is also continuous.
Setg1

0(h) = h. In what follows, we show that for anym≥ 1 there existsg1
m : L1(I1,R)→ L1(I1,R) continuous with the

properties
g1

m(h) = h, ∀h∈ SI1(x0,x1), (a1)

g1
m(h)(t) ∈ F(t, ˜g1

m−1(h)(t),V( ˜g1
m−1(h))(t)) a.e. (I1), (b1)

|g1
1(h)(t)−g1

0(h)(t)| ≤ q1
0(h)(t)+ ε0 a.e. (I1), (c1)

|g1
m(h)(t)−g1

m−1(h)(t)| ≤ M(t)q1
m−1(h) a.e. (I1), m≥ 2. (d1)

If h∈ L1(I1,R), we define

Ψ1
1 (h) = { f ∈ L1(I1,R); f (t) ∈ F(t, h̃(t),V(h̃(t))(t)) a.e.(I1)},

Φ1
1(h) =

{
{h} if h∈ SI1(x0,x1),
Ψ1

1 (h) otherwise.

We apply Lemma 3.2 (withφ(h) = h) and we deduce thatΦ1
1 : L1(I1,R)→D(I1,R) is l. s. c. Using (5) we obtain that the

set
H1

1(h) = cl{ f ∈ Φ1
1(u); | f (t)−h(t)|< q1

0(h)(t)+ ε0 a.e. (I1)}

is not empty for anyh∈ L1(I1,R). We apply the Lemma 2.2 to obtain a selectiong1
1 of H1

1 which is continuous and verifies
(a1)-(c1).

Assume thatg1
i (.), i = 1, . . .m satisfying (a1)-(d1) are already constructed. Therefore, from Hypothesis 1 and(b1),

(d1) we infer

d(g1
m(h)(t),F(t, g̃1

m(h)(t),V(g̃1
m(h))(t))≤ L(t)(| ˜g1

m−1(h)(t)− g̃1
m(h)(t)|+∫ t

0 L(s)| ˜g1
m−1(h)(s)− g̃1

m(h)(s)|ds)≤ M(t)|I pM|q1
m(h) = M(t)(q1

m+1(h)− sm)< M(t)q1
m+1(h),

(6)

wheresm := |I pM|m(εm+1− εm)> 0.
Forh∈ L1(I1,R), we put

Ψ1
m+1(h) = { f ∈ L1(I1,R); f (t) ∈ F(t, g̃1

m(h)(t),V(g̃1
m(h))(t)) a.e. (I1)},

Φ1
m+1(h) =

{
{h} if h∈ SI1(x0,x1),
Ψ1

m+1(h) otherwise.

Again, Lemma 3.2 (applied forφ(h) = g1
m(h)) allows to conclude thatΦ1

m+1(.) is is l.s.c. with nonempty closed
decomposable values. At the same time, from (6), ifh∈ L1(I1,R), the set

H1
m+1(h) = cl{ f ∈ Φ1

m+1(h); | f (t)−g1
m+1(h)(t)|< M(t)q1

m+1(h) a.e. (I1)}

is nonempty. As above, via Lemma 2.2, it is obtained a selectiong1
m+1 of H1

m+1 continuous with (a1)-(d1).
We conclude that

|g1
m+1(h)−g1

m(h)|1,1 ≤ |I pM|m(
1

Γ (p)
|q1

0(h)|1,1+ ε)

which means that the sequence{g1
m(h)}m∈N is a Cauchy sequence in the Banach spaceL1(I1,R). Takeg1(h) ∈ L1(I1,R)

its limit. Since the mappings→ |q1
0(h)|1,1 is continuous, thus it is locally bounded and the Cauchy condition is satisfied

by {g1
m(h)}m∈N locally uniformly with respect toh. Therefore,g1(.) : L1(I1,R)→ L1(I1,R) is continuous.

Taking into account (a1) we find thatg1(h) = h, ∀h∈ SI1(x0,x1) and from the hypotheses that the values ofF are
closed and (b1) we find that

g1(h)(t) ∈ F(t, g̃1(h)(t),V(g̃1(h))(t)), a.e.(I1) ∀h∈ L1(I1,R).
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At the final step of the induction procedure we assume thatgi(.) : L1(Ii ,R)→ L1(Ii ,R), i = 2, ...,k−1 are constructed
and satisfying (I)-(III) and we constructgk(.) : L1(Ik,R)→ L1(Ik,R) continuous with (I)-(III).

We introduce the mapgk
0 : L1(Ik,R)→ L1(Ik,R)

gk
0(h)(t) = gk−1(h|Ik−1)(t)χIk−1 +h(t)χIk\Ik−1

(t) (7)

Sincegk−1(.) is continuous and forh0,h∈ L1(Ik,R) we have

|gk
0(h)−gk

0(h0)|1,k ≤ |gk−1(h|Ik−1)−gk−1(h0|Ik−1)|1,k−1+

∫ k

k−1
|h(t)−h0(t)|dt,

and we deduce thatgk
0(.) is continuous.

At the same time, the equalitygk−1(h) = h, ∀h∈ SIk−1(x0,x1) and (7) allow to obtain

gk
0(h) = h, ∀h∈ SIk(x0,x1).

Forh∈ L1(Ik,R), we define

Ψk
1 (h) = {l ∈ L1(Ik,R); l(t) = gk−1(h|Ik−1)(t)χIk−1(t)+n(t)χIk\Ik−1

(t), n(t) ∈ F(t, g̃k
0(h)(t),V(g̃k

0(h))(t)) a.e.([k−1,k])}

Φk
1(h) =

{
{h} if h∈ SIk(x0,x1),
Ψk

1 (h) otherwise.

Once again Lemma 3.2 (applied forφ(h) = gk
0(h)) implies thatΦk

1(.) : L1(Ik,R) → D(Ik,R) is l.s.c.. In addition, if
h∈ L1(Ik,R) one may write

d(gk
0(t),F(t, g̃k

0(h)(t),V(g̃k
0(h))(t)) = d(h(t),F(t, g̃k

0(h)(t),V(g̃k
0(h)(t))χIk\Ik−1

≤ qk
0(h)(t) a.e. (Ik), (8)

where

qk
0(h)(t) = |h(t)|+q(t)+L(t)(|g̃k

0(h)(t)|+
∫ t

0
L(s)|g̃k

0(h)(s)|ds).

Obviously,qk
0 : L1(Ik,R)→ L1(Ik,R) is continuous. Ifm≥ 0 we define

qk
m+1(h) = |I pM|m(

kp−1

Γ (p)
|qk

0(h)|1,k+ εm+1).

and from the continuity ofqk
0(.) we deduce the continuity ofqk

m : L1(Ik,R)→ L1(Ik,R).
Finally, we provide the existence ofgk

m : L1(Ik,R)→ L1(Ik,R) continuous such that

gk
m(h)(t) = gk−1(h|Ik−1)(t) ∀t ∈ Ik−1, (ak)

gk
m(h) = h ∀h∈ SIk(x0,x1), (bk)

gk
m(h)(t) ∈ F(t, ˜gk

m−1(h)(t),V( ˜gk
m−1(h))(t)) a.e. (Ik), (ck)

|gk
1(h)(t)−gk

0(h)(t)| ≤ qk
0(h)(t)+ ε0 a.e. (Ik), (dk)

|gk
m(h)(t)−gk

m−1(h)(t)| ≤ M(t)qk
m−1(h) a.e. (Ik), m≥ 2. (ek)

Set
Hk

1(h) = cl{ f ∈ Φk
1(h); | f (t)−gk

0(h)(t)|< qk
0(h)(t)+ ε0 a.e. (Ik)}.

Using (8),Hk
1(h) 6= /0 for anyh∈ L1(I1,R). Taking into account Lemma 2.2 and the fact that the mapsgk

0,q
k
0 are continuous

we find a continuous selectiongk
1 of Hk

1 with (ak)-(dk).
If gk

i (.), i = 1, . . .m with (ak)-(ek)are already constructed, from (ek) one may write

d(gk
m(h)(t),F(t, g̃k

m(h)(t),V(g̃k
m(h))(t))≤ L(t)(| ˜gk

m−1(h)(t)− g̃k
m(h)(t)|+∫ t

0 L(s)| ˜gk
m−1(h)(s)− g̃k

m(h)(s)|ds) ≤ M(t)(qk
m+1(h)− sm)< M(t)qk

m+1(h),
(9)
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wheresm := |I pM|m(εm+1− εm)> 0.
Forh∈ L1(Ik,R), we define

Ψk
m+1(h) = {l ∈ L1(Ik,R); l(t) = gk−1(h|Ik−1)(t)χIk−1(t)+

n(t)χIk\Ik−1
(t), n(t) ∈ F(t, g̃k

m(h)(t),V(g̃k
m(h))(t)) a.e. ([k−1,k])},

Φk
m+1(h) =

{
{h} if h∈ SIk(x0,x1),
Ψk

m+1(h) otherwise.

Applying Lemma 3.2 it is obtained thatΦk
m+1(.) : L1(Ik,R)→ P(L1(Ik,R)) has nonempty closed decomposable values

and is l.s.c.. As above, the set

Hk
m+1(h) = cl{ f ∈ Φk

m+1(h); | f (t)−gk
m+1(h)(t)|< M(t)qk

m+1(h) a.e. (Ik)} h∈ L1(Ik,R)

is nonempty. Again, Lemma 2.2 allows to obtain a continuous selectiongk
m+1 of Hk

m+1, verifying (ak)-(ek).
By (ek) one has

|gk
m+1(h)−gk

m(h)|1,k ≤ |I pM|m[
kp−1

Γ (p)
|qk

0(h)|1,1+ ε].

Repeating the proof done in the first case we get the convergence of{gk
m(h)}m∈N to somegk(h) ∈ L1(Ik,R). Moreover,

gk(.) : L1(Ik,R)→ L1(Ik,R) is continuous.
By (ak) we have that

gk(h)(t) = gk−1(h|Ik−1)(t) ∀t ∈ Ik−1,

by (bk) gk(h) = h ∀h∈ SIk(x0,x1) and, finally, since the values ofF are closed, from (ck) we deduce that

gk(h)(t) ∈ F(t, g̃k(h)(t),V(g̃k(h))(t)), a.e. (Ik) ∀h∈ L1(Ik,R),

and the proof is complete.

Remark 3.4.By definition, a subspaceX of a Hausdorff topological spaceY is said to be a retract ofY if there exists a
mappingh : Y → X continuous withh(x) = x, ∀x∈ X.

So, Theorem 3.3 states that for eachx0,x1 ∈ R, the setS (x0,x1) is a retract of the Banach spaceL1
loc([0,∞),R).
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