

Applied Mathematics & Information Sciences Letters An International Journal

On a Certain Triple Construction of GMS-Algebras

Abd El-Mohsen Badawy*

Department of Mathematics, Faculty of Science, Tanta University, Egypt

Received: 5 Feb. 2015, Revised: 1 Apr. 2015, Accepted: 3 Apr. 2015 Published online: 1 Sep. 2015

Abstract: In this paper we introduce a certain subclass GK_2 of the class GMS of all generalized *MS*-algebras. A simple triple construction of principal generalized K_2 -algebras which works with pairs of elements only is given. We also characterize isomorphisms of these algebras by means of triples. Finally we introduce a notion of congruence pairs for the class of principal generalized K_2 -algebras. Then, we will consider the representation of congruences on principal GK_2 -algebras in terms of congruence pairs on some underlying simpler structures.

Keywords: MS-algebras; Generalized MS-algebras; Kleene algebras; Generalized Kleene algebras; K₂-algebras; Congruence pairs.

This paper was presented in the 4th International Conference of Mathematics and Information Science, 5-7 Feb. 2015 which was held in Zewail City of Science and Technology.

1 Introduction

In 1983 T. S. Blyth and J. C. Varlet [9] introduced MS-algebras which are algebras of type (2,2,1,0,0) abstracting de Morgan algebras and Stone algebras. In [10] they investigated the lattice of subvarieties of MS-algebras and characterized its members by identities. In 1996 Ševčovič [19] investigated a larger variety of algebras containing MS-algebras, so-called generalized MS-algebras (GMS-algebras). In such algebras the distributive identity need not be necessarily satisfied. In [11] T. S. Blyth and J. C. Varlet presented a construction of some MS-algebras from the subvariety K_2 from Kleene algebras and distributive lattices. This was a construction by means of triples which were successfully used in construction of Stone algebras (see [13, 14]), distributive *p*-algebras (see [16]), modular *p*-algebras (see [17]), etc. T. S. Blyth and J. V. Varlet [12] improved their construction from [11] by means of quadruples and they showed that each member of K_2 can be constructed in this way. In [15] M. Haviar presented a simple quadruple construction of locally bounded K_2 -algebras which works with pairs of elements only. In 2012 A. Badawy, D. Guffova and M. Haviar [5] introduced a simple triple construction of principal MS-algebras and they showed that there exists a one-to-one correspondence between the principal MS-algebras and the principal MS-triples. They also introduced the class of decomposableMS-algebras containing the class of principal MS-algebras and they presented a triple construction of decomposable MS-algebras generalizing the construction of principal MS-algebras. Moreover, they proved that there exists a one-to-one correspondence between the decomposable MS-algebras and the decomposable MS-triples. Recently, A. Badawy [1] introduced a quadruple construction of the class of all modular GMS-algebras. Also, A. Badawy [2, 3] and [4] introduced the notion of d_L -filters of principal MS-algebras, the notion of De Morgan filters of decomposable MS-algebras and the congruences induced by De Morgan filters of decomposable MS-algebras, respectively. A. Badawy and M.S. Rao [6] introduced the notion of closure ideals of MS-algebras. R. Beazer [3] introduced the notion of congruence pairs for K₂-algebras.

The aim of this paper is to introduce a subvariety of GMS-algebras containing the variety of K_2 -algebras, the so-called generalized K_2 -algebras. We introduce and construct principal generalized K_2 -algebras from generalized Kleene algebras and bounded lattices by means of triples. Also we define isomorphism between two principal GK_2 -triples and we show that two principal GK_2 -algebras are isomorphic if and only if their associated principal GK_2 -triples are isomorphic. In the final part of this paper, we introduce the concept of congruence pairs for the class of principal GK_2 -algebras.

^{*} Corresponding author e-mail: abdelmohsen.mohamed@science.tanta.edu.eg

Then, we show that every congruence relation θ on a principal generalized K_2 -algebra L can be uniquely determined by a congruence pair (θ_1, θ_2) , where $\theta_1 \in Con(L^{\circ\circ})$ and $\theta_2 \in Con(D(L))$.

2 Preliminaries

In this section, we present certain definitions and important results taken mostly from [7,9,10] and [17], those will be required in the paper.

An *MS*-algebra is an algebra $(L; \lor, \land, \circ, 0, 1)$ of type (2, 2, 1, 0, 0) where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation \circ satisfies:

(1) $x \le x^{\circ\circ}$ (2) $(x \land y)^{\circ} = x^{\circ} \lor y^{\circ}$, (3) $1^{\circ} = 0$.

The class **MS** of all *MS*-algebras forms a variety. The members of the subvariety **M** of **MS** defined by the identity

(4) $x = x^{\circ \circ}$

are called de Morgan algebras and the members of the subvariety ${\bf K}$ of ${\bf M}$ defined by the identity

(5) $x \wedge x^{\circ} \leq y \vee y^{\circ}$

are called Kleene algebras. The subvariety K_2 of MS is defined by the additional two identities:

(6) $x \wedge x^{\circ} = x^{\circ \circ} \wedge x^{\circ}$, (7) $x \wedge x^{\circ} \le y \lor y^{\circ}$.

The class **S** of all Stone algebras is a subvariety of **MS** and is characterized by the identity

(8)
$$x \wedge x^\circ = 0$$
.

The subvariety **B** of **MS** characterized by the identity

(9)
$$x \lor x^{\circ} = 1$$

is called the class of Boolean algebras.

A generalized de Morgan algebra (or *GM*-algebra) is a universal algebra $(L; \lor, \land, ^-, 0, 1)$ where $(L; \lor, \land, 0, 1)$ is a bounded lattice and $^-$ the unary operation of involution satisfies the identities:

(10)
$$x = x^{--},$$

(11) $(x \land y)^{-} = x^{-} \lor y^{-},$
(12) $1^{-} = 0.$

A generalized Kleene algebra (*GK*-algebra) *L* is a *GM*-algebra satisfying the identity.

(13)
$$x \wedge x^- \leq y \vee y^-$$
.

A modular *GM*-algebra *L* is *GM*-algebra where $(L; \lor, \land, 0, 1)$ is a modular lattice.

A generalized *MS*-algebra (or *GMS*-algebra) is a universal algebra $(L; \lor, \land, \circ, 0, 1)$ where $(L; \lor, \land, 0, 1)$ is a bounded lattice and the unary operation $^{\circ}$ satisfies the identities:

(14) $x = x^{\circ\circ},$ (15) $(x \wedge y)^{\circ} = x^{\circ} \vee y^{\circ},$ (16) $1^{\circ} = 0.$

A modular *GMS*-algebra is a *GMS*-algebra $(L; \lor, \land, \circ, 0, 1)$ where $L = (L; \lor, \land, 0, 1)$ is a modular lattice.

The class **GMS** of all *GMS*-algebras forms a variety and containing the class of all modular *GMS*-algebras and the latter containing the class **MS** of all *MS*-algebras.

The main immediate consequences of these axioms are summarized in the following result (see [9]).

Lemma 2.1. Let *L* be a *GMS*-algebra. Then we have

(1) $0^{\circ} = 1$, (2) $x \le y \Rightarrow x^{\circ} \ge y^{\circ}$, (3) $x^{\circ} = x^{\circ\circ\circ}$, (4) $(x \lor y)^{\circ} = x^{\circ} \land y^{\circ}$, (5) $(x \land y)^{\circ\circ} = x^{\circ\circ} \land y^{\circ\circ}$. (6) $(x \lor y)^{\circ\circ} = x^{\circ\circ} \lor y^{\circ\circ}$.

3 Principal generalized *K*₂-algebras

In this section we give a simple triple construction of a principal GK_2 -algebra from a triple (K, D, φ) , where *K* is a *GK*-algebra, *D* is a bounded lattice and $\varphi : K \to D$ is a lattice homomorphism of *K* into *D*.

Firstly we introduce certain *GMS*-algebras, which are called generalized K_2 -algebras (briefly GK_2 -algebras).

Definition 3.1. A GK_2 -algebra is a GMS-algebra L satisfying

(1)
$$x \wedge x^\circ = x^{\circ\circ} \wedge x^\circ$$

(2) $x \wedge x^\circ < y \lor y^\circ$.

The class \mathbf{GK}_2 of all GK_2 -algebras contains the class \mathbf{K}_2 of all K_2 -algebras.

A modular GK_2 -algebra L is a GK_2 -algebra, whenever L is a modular lattice. The class $\mathbf{mGK_2}$ of all modular GK_2 -algebras contains the class $\mathbf{K_2}$ and the class of all modular S-algebras.

For any GK_2 -algebra L, we have two important subsets of L which play basic roles of this paper, namely $L^{\circ\circ} = \{x \in L : x = x^{\circ\circ}\}$, the set of all closed elements of L and $D(L) = \{x \in L : x^{\circ} = 0\}$, the set of all dense elements of L. One can observe the following.

Lemma 3.2. Let $L \in \mathbf{GK}_2$. Then

(1) $L^{\circ\circ} = \{x \in L : x = x^{\circ\circ}\}$ is a *GK*-algebra, (2) $D(L) = \{x \in L : x^{\circ} = 0\}$ is a filter of *L*.

Also, we have two other important subsets of a GK_2 -algebra L which are given in the following Lemma.

Lemma 3.3. Let $L \in \mathbf{GK}_2$. Then

- (1) $L^{\wedge} = \{x \wedge x^{\circ} : x \in L\} = \{x \in L : x \le x^{\circ}\}$ is an ideal of *L*,
- (2) $L^{\vee} = \{x \lor x^{\circ} : x \in L\} = \{x \in L : x \ge x^{\circ}\}$ is a filter of L. Moreover $D(L) \subseteq L^{\vee}$.

Proof. (1). Clearly, $0 \in L^{\wedge}$. Let $x, y \in L^{\wedge}$. Then $x \leq x^{\circ}$ and $y \leq y^{\circ}$. By Definition 3.1(2), we get $x = x \wedge x^{\circ} \leq y \vee y^{\circ} = y^{\circ}$. It follows that $x^{\circ} \geq y^{\circ\circ} \geq y$. Then $x^{\circ} \wedge y^{\circ} \geq x, y$ implies $(x \vee y)^{\circ} = x^{\circ} \wedge y^{\circ} \geq x \vee y$. Then $x \vee y \in L^{\wedge}$. Let $x \in L^{\wedge}$ be such that $z \leq x$ for some $z \in L$. Then $z \leq x \leq x^{\circ} \leq z^{\circ}$. Hence $z \in L^{\wedge}$. Then L^{\wedge} is an ideal of *L*.

(2). By duality of (1), we get that L^{\vee} is a filter of *L*. Let $x \in D(L)$. Then $x = x \vee x^{\circ} \in L^{\vee}$, as $x^{\circ} = 0$. Therefore $D(L) \subseteq L^{\vee}$

Now we consider certain algebras of the class of GK_2 -algebras which the so-called principal GK_2 -algebras.

Definition 3.4. A GK_2 -algebra L is called a principal GK_2 -algebra if it satisfies the following conditions:

(1) The filter D(L) is principal, i.e. there exists an element $d \in L$ such that D(L) = [d),

(2) $(x \land y) \lor d = (x \lor d) \land (y \lor d)$ for every $x, y \in L$, i.e. *d* is a distributive element of *L*,

(3) $x = x^{\circ \circ} \land (x \lor d)$ for every $x \in L$.

Clearly, the class of all principal GK_2 -algebras contains the class **GK** of all GK-algebras and the class of all principal modular *S*-algebras.

Definition 3.5. An (abstract) principal GK_2 -triple is (K, D, φ) , where

(1) $K = (K; \lor, \land, \circ, 0_K, 1_K)$ is a *GK*-algebra,

- (2) $D = (D; \lor, \land, 0_D, 1_D)$ is a bounded lattice,
- (3) $\varphi: K \to D$ is a (0,1)-lattice homomorphism from *K* into *D* and $\varphi(a) = 0_D$ for any $a \in K^{\wedge}$.

Let *L* be a principal *GK*₂-algebra with the smallest dense element *d*. Define the map $\varphi(L) : L^{\circ\circ} \to [d]$ by $\varphi(L)(a) = a \lor d$ for every $a \in L^{\circ\circ}$.

Lemma 3.6. Let *L* be a principal GK_2 -algebra with the smallest dense element *d*. Then $(L^{\circ\circ}, [d), \varphi(L))$ is a principal GK_2 -triple.

Proof. By Lemma 3.2(1), $L^{\circ\circ}$ is a *GK*-algebra and by Lemma 3.2(2), D(L) = [d) is a bounded lattice. It is easy to observe that $\varphi(L)$ is a (0,1)-lattice homomorphism. So we prove only that $\varphi(L)(x) = d$ for any $x \in L^{\circ\circ\wedge}$. Let $x \in L^{\circ\circ\wedge}$. Then $x = a \wedge a^{\circ}$ for some $a \in L^{\circ\circ}$.

$$\varphi(L)(a \wedge a^{\circ}) = (a \wedge a^{\circ}) \lor d$$

= $(a \wedge a^{\circ}) \lor (d \lor d^{\circ})$ as $d^{\circ} = 0$
= $d \lor d^{\circ}$ by (2) of definition 3.1 (2)
= d .

Therefore $(L^{\circ\circ}, [d), \varphi(L))$ is a principal *GK*₂-triple.

We say that $(L^{\circ\circ}, [d), \varphi(L))$ the principal GK_2 -triple associated with L.

Now we construct principal GK_2 -algebras from principal GK_2 -triples, which is one of the main results of this paper.

Theorem 3.7. Let (K, D, φ) be a principal GK_2 -triple. Then

$$L = \{(a,x) : a \in K, x \in D, x \le \varphi(a)\}$$

is a principal GK_2 -algebra if we define

$$(a,x) \lor (b,y) = (a \lor b, x \lor y)$$

$$(a,x) \land (b,y) = (a \land b, x \land y)$$

$$(a,x)^{\circ} = (a^{\circ}, \varphi(a^{\circ}))$$

$$1_{L} = (1_{K}, 1_{D})$$

$$0_{L} = (0_{K}, 0_{D}).$$

Moreover, $L^{00} \cong K$ and $D(L) \cong D$.

Proof. Clearly *L* is a sublattice of $K \times D$. It is observed that $0_L = (0_K, 0_D)$ and $1_L = (1_K, 1_D)$ are the smallest and the greatest elements of *L* respectively. Then *L* is a bounded lattice. Now for every $(a, x), (b, y) \in L$, we have

$$(a,x) \wedge (a,x)^{\circ\circ} = (a,x) \wedge (a^{\circ\circ}, \varphi(a^{\circ\circ})) = (a,x) \wedge (a^{\circ\circ}, x \wedge \varphi(a^{\circ\circ})) = (a,x).$$

Then $(a, x) \leq (a, x)^{\circ \circ}$. Also, we have

$$\begin{split} [(a,x) \wedge (b,y)]^{\circ} &= ((a \wedge b)^{\circ}, \varphi((a \wedge b)^{\circ})) \\ &= (a^{\circ} \lor b^{\circ}, \varphi(a^{\circ}) \lor \varphi(b^{\circ})) \\ &= (a,x)^{\circ} \lor (b,y)^{\circ}, \end{split}$$

and

$$1_L^{\circ} = 0_L.$$

Therefore *L* is a *GMS*-algebra. Now we prove that *L* is a *GK*₂-algebra. Recall $\varphi(c) = 0_D$, $\forall c \in K^{\wedge}$. For every $(a,x) \in L$, we have

$$(a,x) \wedge (a,x)^{\circ} = (a \wedge a^{\circ}, x \wedge \varphi(a^{\circ}))$$

= $(a \wedge a^{\circ}, x \wedge \varphi(a) \wedge \varphi(a^{\circ}))$ as $x \leq \varphi(a)$
= $(a \wedge a^{\circ}, x \wedge \varphi(a \wedge a^{\circ}))$
= $(a \wedge a^{\circ}, x \wedge 0_D)$ as $a \wedge a^{\circ} \in K^{\wedge}$
= $(a \wedge a^{\circ}, 0_D),$
 $(a,x)^{\circ \circ} \wedge (a,x)^{\circ} = (a \wedge a^{\circ}, \varphi(a) \wedge \varphi(a^{\circ}))$
= $(a \wedge a^{\circ}, x \wedge \varphi(a \wedge a^{\circ}))$
= $(a \wedge a^{\circ}, 0_D)$ as $a \wedge a^{\circ} \in K^{\wedge}$.

Then $(a,x) \wedge (a,x)^{\circ} = (a,x)^{\circ \circ} \wedge (a,x)^{\circ}$. Similarly we can deduce that $(a,x) \wedge (a,x)^{\circ} \leq (b,y) \vee (b,y)^{\circ}$. To prove that the *GK*₂-algebra *L* is principal, we firstly proceed to prove that $L^{\circ \circ}$ is a *GK*-algebra.

$$L^{\circ\circ} = \{(a,x) \in L : (a,x)^{\circ\circ} = (a,x)\} \\ = \{(a,x) \in L : (a^{\circ\circ}, \varphi(a^{\circ\circ})) = (a,x)\} \\ = \{(a,x) \in L : a \in K, x \in D, x = \varphi(a)\} \\ = \{(a,\varphi(a)) : a \in K\}.$$

Obviously $L^{\circ\circ} \cong K$ under the isomorphism $(a, \varphi(a)) \to a$. It follows that $L^{\circ\circ}$ is a *GK*-algebra. Now we prove that D(L) is a principal filter of *L*.

$$D(L) = \{(a,x) \in L : (a,x)^{\circ} = (0_K, 0_D)\} = \{(a,x) \in L : (a^{\circ}, \varphi(a^{\circ})) = (0_K, 0_D)\} = \{(1_K, x) : x \in D\}$$

Clearly $D(L) \cong D$ under the isomorphism $(1_K, x) \to x$. Then $(1_K, 0_D) \to 0_D$ implies that $(1_K, 0_D)$) is the smallest dense element of *L*. So $D(L) = [(1_K, 0_D))$ Now, we prove that $(1_K, 0_D)$ is a distributive element of *L*. For any $(a, x), (b, y) \in L$, we have

$$\begin{aligned} ((a,x) \land (b,y)) \lor (1_K, 0_D) &= \\ &= ((a \land b) \lor 1_K, (x \land y) \lor 0_D) \\ &= ((a \lor 1_K) \land (b \lor 1_K), (x \lor 0_D) \land (y \lor 0_D)) \\ &= (a \lor 1_K, x \lor 0_D) \land (b \lor 1_K, y \lor 0_D) \\ &= ((a,x) \lor (1_K, 0_D)) \land ((b,y) \lor (1_K, 0_D)). \end{aligned}$$

Also, we get

$$(a,x)^{\circ\circ} \wedge ((a,x) \vee (1_K, 0_D)) = (a, \varphi(a)) \wedge (a \vee 1_K, x \vee 0_D)$$

= $(a \wedge (a \vee 1_K), \varphi(a) \wedge x))$
= (a,x) as $x \leq \varphi(a)$.

Therefore L is a principal GK_2 -algebra. The proof is complete.

Corollary 3.8. Let *L* be a principal GK_2 -algebra constructed from the principal GK_2 -triple (K, D, φ) . Then

 $\begin{array}{l} (1) \ L^{\vee} = \{(a,x) \in L : a \in K^{\vee}\}, \\ (2) \ L^{\wedge} = \{(a,0_D) \in L : a \in K^{\wedge}\}. \end{array}$

Corollary 3.9. Let *L* be a principal GK_2 -algebra constructed from the principal GK_2 -triple (K, D, φ) . Then

- (1) L is a modular GK_2 -algebra, whenever K is a modular GK-algebra and D is a modular lattice,
- (2) *L* is a *K*₂-algebra, whenever *K* is a Kleene algebra and *D* is a distributive lattice,
- (3) *L* is a modular *S*-algebra, whenever *K* is a Boolean algebra and *D* is a modular lattice,
- (4) *L* is a Stone algebra, whenever *K* is a Boolean algebra and *D* is a distributive lattice.

We shall say that the principal GK_2 -algebra L from Theorem 3.7 is associated with the principal GK_2 -triple (K, D, φ) and the construction of L described in Theorem 3.7 will be called a principal GK_2 -construction.

We illustrate the principal GK_2 -construction on the following example.

Example 3.10. Let *K* be the three-element *GK*-algebra and let *D* be the Diamond M_5 (see Figure 1).

Define a homomorphism $\varphi : K \to D$ by the rule

$$\varphi(0) = \varphi(a) = 0 \text{ and } \varphi(1) = 1$$

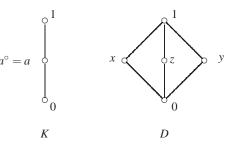


Fig. 1: K is a Kleene algebra and D is a bounded modular lattice

Then (K,D,φ) is a principal GK_2 -triple and by the principal GK_2 -construction we obtain a principal GK_2 -algebra *L* such that

$$L = \{(0,0), (a,0), (1,0), (1,x), (1,z), (1,y), (1,1)\}$$

and

$$(0,0)^0 = (1,1), (a,0)^0 = (a,0),$$

$$(1,0)^0 = (1,x)^0 = (1,z) = (1,y)^0 = (1,1)^0 = (0,0).$$

The algebra *L* is represented in Figure 2. The shaded elements form a *GK*-algebra L^{00} which is obviously isomorphic to *K*. One can also observe that the filter D(L) is isomorphic to the given lattice *D*. Moreover, the homomorphism $\varphi(L) : L^{00} \to D(L)$ defined by $\varphi(L)(c,\varphi(c)) = (c,\varphi(c)) \lor (1,0)$ is a (0,1)-homomorphism and $\varphi(L)(a,0) = (0,0)$ for all $a \in K^{\wedge}$. Hence the triple $(L^{00}, D(L), \varphi(L))$ is a principal *GK*₂-triple.

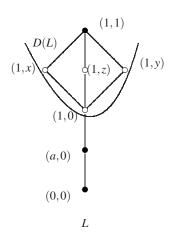


Fig. 2: *L* is the *GK*₂-algebra associated with (K, D, φ)

It is observed in the following Theorem that every principal GK_2 -algebra can be obtained by the principal GK_2 -construction.

Theorem 3.11. Let *L* be a principal GK_2 -algebra with the smallest dense element *d*. Let $(L^{\circ\circ}, [d), \varphi(L))$ be a principal GK_2 -triple associated with *L*. Then the principal GK_2 -algebra L_1 associated with $(L^{\circ\circ}, [d), \varphi(L))$ is isomorphic to *L*.

Proof. Define the map $f: L \to L_1$ by $f(x) = (x^{\circ\circ}, x \lor d)$ for every $x \in L$. Since $x \lor d \le x^{\circ\circ} \lor d = \varphi(L)(x^{\circ\circ})$, then $f(x) \in L_1$.

Now for any $x, y \in L$, we have

$$f(x \wedge y) = ((x \wedge y)^{\circ\circ}, (x \wedge y) \lor d)$$

= $(x^{\circ\circ} \wedge y^{\circ\circ}, (x \lor d) \land (y \lor d))$ by definition 3.4(3)
= $(x^{\circ\circ}, x \lor d) \land (y^{\circ\circ}, y \lor d)$
= $f(x) \land f(y),$

and

$$f(x \lor y) = ((x \lor y)^{\circ\circ}, (x \lor y) \lor d)$$

= $(x^{\circ\circ} \lor y^{\circ\circ}, (x \lor d) \lor (y \lor d))$
= $(x^{\circ\circ}, x \lor d) \lor (y^{\circ\circ}, y \lor d)$
= $f(x) \lor f(y),$

also

$$f(x^{\circ}) = (x^{\circ\circ\circ}, x^{\circ} \lor d)$$

= $(x^{\circ}, \varphi(L)(x^{\circ}))$
= $(f(x))^{\circ}$.

Therefore *f* is a homomorphism of *GK*₂-algebras. To prove that *f* is an injective mapping, suppose f(x) = f(y). Then we have $x^{\circ\circ} = y^{\circ\circ}$ and $x \lor d = y \lor d$. Consequently, by Definition 3.4(3), we get

$$x = x^{\circ \circ} \land (x \lor d) = y^{\circ \circ} \land (y \lor d) = y.$$

Now we prove that f is a surjective map. Let $(a,x) \in L_1$. Set $z = a \wedge x$. Since $x \leq \varphi(L)(a), a \in L^{\circ\circ}$ and $x \in D(L)$, then we have

$$f(z) = ((a \land x)^{\circ\circ}, (a \land x) \lor d)$$

= $(a^{\circ\circ} \land x^{\circ\circ}, (a \lor d) \land (x \lor d))$ by definition 3.4(3)
= $(a \land 1, (a \lor d) \land x)$ as $a^{\circ\circ} = a, x^{\circ\circ} = 1$ and $x \ge d$
= $(a, \varphi(L)(a) \land x)$
= (a, x) .

Therefore *f* is an isomorphism and $L \cong L_1$.

4 Isomorphisms of principal GK₂-algebras

In this section we define an isomorphism between two principal GK_2 -triples and we show that two principal GK_2 -algebras are isomorphic if and only if their associated principal GK_2 -triples are isomorphic.

Definition 4.1. An isomorphism of the principal GK_2 -triples (K, D, φ) and (K_1, D_1, φ_1) is a pair (α, β) ,

where α is an isomorphism of *K* and *K*₁, β is an isomorphism of *D* and *D*₁ such that the diagram

$$\begin{array}{ccc}
\varphi \\
K \longrightarrow D \\
\alpha \downarrow & \downarrow \beta \\
K_1 \longrightarrow D_1 \\
\varphi_1
\end{array}$$

commutes. The following Theorem shows that the principal GK_2 -algebras are represented by the principal GK_2 -triples uniquely.

Theorem 4.2. Two principal GK_2 -algebras are isomorphic if and only if their associated principal GK_2 -triples are isomorphic.

Proof. Let $g: L_1 \to L_2$ be an isomorphism of principal GK_2 -algebras. It is obvious that $(g|L_1^{\circ\circ}, g|D(L_1))$ is an isomorphism between the principal GK_2 -triples $(L_1^{\circ\circ}, D(L_1), \varphi(L_1))$ and $(L_2^{\circ\circ}, D(L_2), \varphi(L_2))$, where $g|L_1^{\circ\circ}$ and $g|D(L_1)$ are restrictions of g to $L_1^{\circ\circ}$ and $D(L_1)$ respectively. Conversely, let (K_1, D_1, φ_1) and (K_2, D_2, φ_2) be the principal GK_2 -triples associated to principal GK_2 -algebras L_1 and L_2 respectively and let

$$(\alpha,\beta):(K_1,D_1,\varphi_1)\to(K_2,D_2,\varphi_2)$$

be an isomorphism of principal GK_2 -triples. Let us denote by L'_1 and L'_2 the principal GK_2 -algebras associated to principal GK_2 -triples (K_1, D_1, φ_1) and (K_2, D_2, φ_2) , respectively. Consider the mapping $g: L'_1 \to L'_2$ defined by the rule $g(a,x) = (\alpha(a), \beta(x))$. It is clear that g is a (0, 1)-lattice isomorphism.

Moreover, we have

$$g((a,x)^{\circ}) = g(a^{\circ}, \varphi_1(a^{\circ}))$$

= $(\alpha(a^{\circ}), \beta(\varphi_1(a^{\circ})))$
= $(\alpha(a^{\circ}), \varphi_2(\alpha(a^{\circ})))$
= $((\alpha(a))^{\circ}, \varphi_2(\alpha(a))^{\circ})$
= $(\alpha(a), \beta(x))^{\circ}$
= $(g(a,x))^{\circ}$

Therefore g is an isomorphism of principal GK_2 -algebras. The next Theorem 4.3 together with the previous Theorem 4.2 and Theorem 3.11 show that there is a one-to-one correspondence between principal GK_2 -algebras and principal GK_2 -triples.

Theorem 4.3. Let (K, D, φ) be a principal GK_2 -triple and let *L* be its associated principal GK_2 -algebra. Then

$$(L^{00}, D(L), \varphi(L)) \cong (K, D, \varphi).$$

Proof. From Theorem 3.7, we have the two isomorphisms $\alpha : L^{\circ\circ} \to K$ defined by $\alpha(a, \varphi(a)) = a$ and $\beta : D(L) \to D$ defined by $\beta(1_K, x) = x$. It remains to prove that the

A. Badawy: On a certain triple construction...

diagram

$$\begin{array}{cccc}
\varphi(L) \\
L^{\circ\circ} &\longrightarrow D(L) \\
\alpha \downarrow & \downarrow \beta \\
K_1 &\longrightarrow D \\
\varphi
\end{array}$$

is commutative. Let $z \in L^{\circ\circ}$. Then $z = (a, \varphi(a))$ for some $a \in K$ and we have

$$\begin{split} \beta(\varphi(L)(z)) &= \beta((a,\varphi(a)) \lor (1_K,0_D)) \\ &= \beta(a \lor 1_K,\varphi(a) \lor 0_D) \\ &= \beta(1_K,\varphi(a)) \\ &= \varphi(a) \\ &= \varphi(\alpha(a,\varphi(a))). \end{split}$$

The proof is complete.

5 Congruence pairs of principal *GK*₂-algebras

In this section we introduce the concept of congruence pairs in principal GK_2 -algebras. Also we characterize any congruence relation on a principal GK_2 -algebra in terms of congruence pair.

Let *L* be a *GK*₂-algebra. For a congruence relation θ on *L*, let $\theta_{L^{\circ\circ}}$ and $\theta_{D(L)}$ are denote the restrictions of θ to $L^{\circ\circ}$ and D(L) respectively. Obviously, $\theta_{L^{\circ\circ}}$ and $\theta_{D(L)}$ are congruence relations on $L^{\circ\circ}$ and D(L) respectively. We use *Con*(*L*) to denote the lattice of all congruences on *L*. Also we use Δ and ∇ to denote the identity and universal congruences of *L* respectively. Thus $(\theta_{L^{\circ\circ}}, \theta_{D(L)}) \in Con(L^{\circ\circ}) \times Con(D(L)).$

Now we introduce the notion of congruence pairs for principal GK_2 -algebras.

Definition 5.1. Let *L* be a principal GK_2 -algebra with a smallest dense element *d*. An arbitrary pair $(\theta_1, \theta_2) \in Con(L^{\circ\circ}) \times Con(D(L))$ is called congruence pair of *L* if $(a, b) \in \theta_1$ implies $(a \lor d, b \lor d) \in \theta_2$.

From Definition 5.1, we immediately obtain the following results

Lemma 5.2. Let L be a principal GK_2 -algebra with a smallest dense element d. Then we have the following

- (1) (\triangle, Φ) is a congruence pairs of *L*, for every $\Phi \in Con(D(L))$,
- (2) (ψ, ∇) is a congruence pairs of *L*, for every $\psi \in Con(L^{\circ\circ})$.

For the principal GK_2 -algebra, we have the following lemma.

Lemma 5.3. Let *L* be a principal GK_2 -algebra with a smallest dense element *d*. Let (θ_1, θ_2) be a congruence

pair. Then $(a,b) \in \theta_1$ and $(x,y) \in \theta_2$ imply $(a \lor x, b \lor y) \in \theta_2$.

Proof. Let $(a,b) \in \theta_1$ and $(x,y) \in \theta_2$. Then by the above Definition 5.1, we get $(a \lor d, b \lor d) \in \theta_2$. It follows that $(a \lor d \lor x, b \lor d \lor y) \in \theta_2$. Since $d \le x, y$, then $(a \lor x, b \lor y) \in \theta_2$. In the following theorem, we give a characterization for congruence pairs of a principal *GK*₂-algebra. This is a one of the main results of this paper.

Theorem 5.4. Let *L* be a principal GK_2 -algebra with a smallest dense element *d*. Then every congruence relation θ of *L* determines a congruence pair $(\theta_{L^{\circ\circ}}, \theta_{D(L)})$. Conversely, every congruence pair (θ_1, θ_2) uniquely determines a congruence relation θ on *L* satisfying $\theta_{L^{\circ\circ}} = \theta_1$ and $\theta_2 = \theta_{D(L)}$ by the rule

$$(x,y) \in \theta \Leftrightarrow (x^{\circ\circ}, y^{\circ\circ}) \in \theta_1$$
 and $(x \lor d, y \lor d) \in \theta_2$

Proof. Let θ be a congruence on *L*. Then it is clear that $(\theta_{L^{\circ\circ}}, \theta_{D(L)})$ is a congruence pair. Conversely, Let (θ_1, θ_2) be a congruence pair and let θ be the relation define on *L* by the above rule. Clearly θ is an equivalent relation on *L*. We proceed to prove that θ is a lattice congruence. Let $(a,b), (a_1,b_1) \in \theta$. Then $(a^{\circ\circ}, b^{\circ\circ}), (a_1^{\circ\circ}, b_1^{\circ\circ}) \in \theta_1$ and $(a \lor d, b \lor d), (a_1 \lor d, b_1 \lor d) \in \theta_2$. Since $\theta_1 \in Con(L^{\circ\circ})$ and $\theta_2 \in Con(D(L))$, then we get

$$\begin{aligned} ((a \wedge a_1)^{\circ\circ}, (b \wedge b_1)^{\circ\circ}) &= (a^{\circ\circ} \wedge a_1^{\circ\circ}, b^{\circ\circ} \wedge b_1^{\circ\circ}) \in \theta_1, \\ ((a \wedge a_1) \lor d, (b \wedge b_1) \lor d) \\ &= ((a \lor d) \wedge (a_1 \lor d) \ , \ (b \lor d) \wedge (b_1 \lor d)) \in \theta_2. \end{aligned}$$

and

$$((a \lor a_1)^{\circ\circ}, (b \lor b_1)^{\circ\circ}) = (a^{\circ\circ} \lor a_1^{\circ\circ}, b^{\circ\circ} \lor b_1^{\circ\circ}) \in \theta_1,$$

$$((a \lor a_1) \lor d, (b \lor b_1) \lor d)$$

$$= ((a \lor d) \lor (a_1 \lor d) , (b \lor d) \lor (b_1 \lor d)) \in \theta_2.$$

It follows that $(a \wedge a_1, b \wedge b_1)$, $(a \vee a_1, b \vee b_1) \in \theta$, and therefore θ is preserved by the meet and join operations of L. In order to show that θ is preserved by the unary operation °, we let $(a,b) \in \theta$. Then $(a^{\circ\circ}, b^{\circ\circ}) \in \theta_1$. Hence $(a^\circ, b^\circ) \in \theta_1$. By the Definition of congruence pair, $(a^\circ \vee d, b^\circ \vee d) \in \theta_2$. Then $(a^{\circ\circ\circ}, b^{\circ\circ\circ}) \in \theta_1$ and $(a^\circ \vee d, b^\circ \vee d) \in \theta_2$ imply that $(a^\circ, b^\circ) \in \theta$. Therefore θ is a congruence on *L*.

Now, we show that $\theta_{L^{\circ\circ}} = \theta_1$ and $\theta_{D(L)} = \theta_2$. Let $a, b \in L^{\circ\circ}$ be such that $(a, b) \in \theta_1$. Then $(a^{\circ\circ}, b^{\circ\circ}) \in \theta_1$. By the Definition of congruence pair, we have $(a \lor d, b \lor d) \in \theta_2$. Hence $(a, b) \in \theta$. It follows that $(a, b) \in \theta_{L^{\circ\circ}}$ and $\theta \leq \theta_{L^{\circ\circ}}$. Conversely, let $(a, b) \in \theta_{L^{\circ\circ}}$. Then $(a, b) \in \theta$ implies $(a, b) = (a^{\circ\circ}, b^{\circ\circ}) \in \theta_1$. Thus $\theta_{L^{\circ\circ}} \leq \theta_1$ Then $\theta_1 = \theta_{L^{\circ\circ}}$. The equality $\theta_2 = \theta_{D(L)}$ follows straight from the definition of θ . For the uniqueness of θ . Let θ and $\dot{\theta}$ be two congruence relation on L with $\theta_{L^{\circ\circ}} = \dot{\theta}_{L^{\circ\circ}} = \theta_1$ and $\theta_{D(L)} = \dot{\theta}_{D(L)} = \theta_2$. Let $(x, y) \in \theta$. Then $(x^{\circ\circ}, y^{\circ\circ}) \in \theta_{L^{\circ\circ}}$ and $(x \lor d, y \lor d) \in \theta_{D(L)}$. Hence $(x^{\circ\circ}, y^{\circ\circ}) \in \dot{\theta}_{L^{\circ\circ}}$ and $(x \lor d, y \lor d) \in \dot{\theta}_{D(L)}$. Therefore $(x^{\circ\circ}, y^{\circ\circ}) \in \dot{\theta}$ and

 $(x \lor d, y \lor d) \in \hat{\theta}$. Then we deduce that $(x,y) = (x^{\circ\circ} \land (x \lor d), y^{\circ\circ} \land (y \lor d)) \in \hat{\theta}$. Hence $\theta \le \hat{\theta}$. Also, we can get $\hat{\theta} \le \theta$. Then $\theta = \hat{\theta}$.

A one-to-one correspondence between the congruences lattice of a principal GK_2 -algebra L and the set of all congruence pairs of L is obtained immediately by the next corollary.

Corollary 5.5. Let *L* be a principal GK_2 -algebra with a

smallest dense element *d*. Then the set A(L) of congruence pairs of *L* is a sublattice of $Con(L^{\circ\circ}) \times Con(D(L))$ and $\theta \mapsto (\theta_{L^{\circ\circ}}, \theta_{D(L)})$ is an isomorphism of Con(L) and A(L).

Proof. Let $(\theta_1, \theta_2), (\psi_1, \psi_2) \in A(L)$. Then, it is easy to verify that $(\theta_1 \land \psi_1, \theta_2 \land \psi_2) \in A(L)$. Now, we proceed to show that $(\theta_1 \lor \psi_1, \theta_2 \lor \psi_2) \in A(L)$. Let $(a,b) \in \theta_1 \lor \psi_1$. Then there is a sequence $a = a_0, a_1, \dots, a_n = b$ in $L^{\circ\circ}$ such that $(a_{i-1}, a_i) \in \theta_1 \cup \psi_1$, whenever $1 \le i \le n$. Then $(a_{i-1} \lor d, a_i \lor d) \in \theta_2 \cup \psi_2$ by Definition 3.1. Thus we have $a \lor d = a_0 \lor d, a_1 \lor d, \dots, a_n \lor d = b \lor d \in D(L)$. The above result leads to $(a \lor d, b \lor d) \in \theta_2 \lor \psi_2$ and hence $(\theta_1 \lor \psi_1, \theta_2 \lor \psi_2) \in A(L)$. Thus we conclude that A(L) is a sublattice of $Con(L^{\circ\circ}) \times Con(D(L))$. The last part of the Corollary is obvious and the proof is finished.

References

- A. Badawy, On a construction of modular *GMS*-algebras, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, in press (2015).
- [2] A. Badawy, d_L -Filters of principal *MS*-algebras, Journal of Egyptian Mathematical Society, in press (2015).
- [3] A. Badawy, De Morgan filters of Decomposable *MS*algebras, Southeast Asian Bulletin of Mathematics, in press (2015).
- [4] A. Badawy, Congruences and De Morgan filters of Decomposable *MS*-algebras, Southeast Asian Bulletin of Mathematics, in press (2015).
- [5] A. Badawy, D. Guffova and M. Haviar, Triple construction of decomposable *MS*-algebras, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, **51**, 2(2012),35-65.
- [6] A. Badawy and M. S. Rao Closure ideals of *MS*-algebras, Chamchui Journal of Mathematics Vol. 6 (2014),31-46.
- [7] G. Birkhoff, Lattice theory, 3rd. Ed.(Amer. Math. Soc. Colloq. Pub. 25, Providence, R.I. 1967).
- [8] R. Beazer, Congruence pairs for algebras abstracting Kleene and Stone algebras, Czechoslovak Mathematicl Journal, 35,(1985),260-268.
- [9] T. S. Blyth and J. C. Varlet, On a common abstraction of De Morgan algebras and Stone algebras, Proc. Roy. Edinburgh 94(1983), 301-308.
- [10] T. S. Blyth and J. C. Varlet, Subvarieties of the class of MSalgebras, Proc. Roy. Edinburgh 95 (1983), 157-169.
- [11] T. S. Blyth and J. C. Varlet, Sur la construction de certaines MS-algèbres, Portugaliea Math. 39(1980), 489-496.
- [12] T. S. Blyth and J. C. Varlet, Corrigendum sur la construction de certaines *MS*-algèbres, Portugaliea Math. 24 (1983-1984), 469-471.

- [13] C. C. Chen and G. Grätzer, Stone lattices I, Construction theorems, Canad. J. Math., 21(1969), 884-894.
- [14] C. C. Chen and G. Grätzer, Stone lattices II, Structure theorems, Canad. J. Math., 21(1969),895-903.
- [15] M. Haviar, On a certain construction of *MS*-algebras, Portugliae Mathematica, 511994, 71-83.
- [16] T. Katriňák, Die Konstruktion der distributiven pseudokomplementären verbande, Math. Nachrichten, 53(1972), 85-89.
- [17] T. Katriňák and P. Mederly, Construction of modular *p*algebeas, Algebra Univ. , 4(1974), 301-315.
- [18] T. Katriňák and K. Mikula, On a construction of *MS*algebeas, Portugliae Mathematica, 45(19788), 157-163.
- [19] D. Ševčovič, Free non-distributive Morgan-Stone algebras, New Zealand Journal of Math. volume 25(1996), 85-94.

Abd El-Mohsen Badawy received the PhD degree in Algebra, Lattice theory at Mathematics department, Faculty of Science, Tanta University, Egypt. His research interests are in the areas of lattices, distributive lattices, p-algebras, MS-algebras and generalized

MS-algebras. He has published research articles in reputed international journals of mathematics. He is referee of mathematical journals and Mathematics review.