
Appl. Math. Inf. Sci. Lett.3, No. 3, 115-121 (2015) 115

Applied Mathematics & Information Sciences Letters
An International Journal

http://dx.doi.org/10.12785/amisl/030305

On a Certain Triple Construction of GMS-Algebras
Abd El-Mohsen Badawy∗

Department of Mathematics, Faculty of Science, Tanta University, Egypt

Received: 5 Feb. 2015, Revised: 1 Apr. 2015, Accepted: 3 Apr.2015
Published online: 1 Sep. 2015

Abstract: In this paper we introduce a certain subclassGK2 of the classGMS of all generalizedMS-algebras. A simple triple
construction of principal generalizedK2-algebras which works with pairs of elements only is given. We also characterize isomorphisms
of these algebras by means of triples. Finally we introduce anotion of congruence pairs for the class of principal generalized K2-
algebras. Then, we will consider the representation of congruences on principalGK2-algebras in terms of congruence pairs on some
underlying simpler structures.

Keywords: MS-algebras; GeneralizedMS-algebras; Kleene algebras; Generalized Kleene algebras ;K2-algebras; Congruence pairs.

This paper was presented in the 4th International Conference of Mathematics and Information Science, 5-7 Feb. 2015 which
was held in Zewail City of Science and Technology.

1 Introduction

In 1983 T. S. Blyth and J. C. Varlet [9] introduced
MS-algebras which are algebras of type (2,2,1,0,0)
abstracting de Morgan algebras and Stone algebras. In
[10] they investigated the lattice of subvarieties of
MS-algebras and characterized its members by identities.
In 1996 Ševčovič [19] investigated a larger variety of
algebras containingMS-algebras, so-called generalized
MS-algebras (GMS-algebras). In such algebras the
distributive identity need not be necessarily satisfied. In
[11] T. S. Blyth and J. C. Varlet presented a construction
of someMS-algebras from the subvarietyK2 from Kleene
algebras and distributive lattices. This was a construction
by means of triples which were successfully used in
construction of Stone algebras (see [13,14]), distributive
p-algebras (see [16]), modularp-algebras (see [17]), etc.
T. S. Blyth and J. V. Varlet [12] improved their
construction from [11] by means of quadruples and they
showed that each member ofK2 can be constructed in
this way. In [15] M. Haviar presented a simple quadruple
construction of locally boundedK2-algebras which works
with pairs of elements only. In 2012 A. Badawy, D.
Guffova and M. Haviar [5] introduced a simple triple
construction of principalMS-algebras and they showed
that there exists a one-to-one correspondence between the
principalMS-algebras and the principalMS-triples. They
also introduced the class of decomposableMS-algebras

containing the class of principalMS-algebras and they
presented a triple construction of decomposable
MS-algebras generalizing the construction of principal
MS-algebras. Moreover, they proved that there exists a
one-to-one correspondence between the decomposable
MS-algebras and the decomposableMS-triples. Recently,
A. Badawy [1] introduced a quadruple construction of the
class of all modularGMS-algebras. Also, A. Badawy [2,
3] and [4] introduced the notion ofdL-filters of principal
MS-algebras, the notion of De Morgan filters of
decomposableMS-algebras and the congruences induced
by De Morgan filters of decomposableMS-algebras,
respectively. A. Badawy and M.S. Rao [6] introduced the
notion of closure ideals ofMS-algebras. R. Beazer [3]
introduced the notion of congruence pairs for
K2-algebras.
The aim of this paper is to introduce a subvariety of
GMS-algebras containing the variety ofK2-algebras, the
so-called generalizedK2-algebras. We introduce and
construct principal generalizedK2-algebras from
generalized Kleene algebras and bounded lattices by
means of triples. Also we define isomorphism between
two principalGK2-triples and we show that two principal
GK2-algebras are isomorphic if and only if their
associated principalGK2-triples are isomorphic. In the
final part of this paper, we introduce the concept of
congruence pairs for the class of principalGK2-algebras.
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Then, we show that every congruence relationθ on a
principal generalizedK2-algebra L can be uniquely
determined by a congruence pair(θ1,θ2), where
θ1 ∈Con(L◦◦) andθ2 ∈Con(D(L)).

2 Preliminaries

In this section, we present certain definitions and
important results taken mostly from [7,9,10] and [17],
those will be required in the paper.

An MS-algebra is an algebra(L;∨,∧,◦ ,0,1) of type
(2,2,1,0,0) where(L;∨,∧,0,1) is a bounded distributive
lattice and the unary operation◦ satisfies:

(1) x ≤ x◦◦

(2) (x∧ y)◦ = x◦∨ y◦,
(3) 1◦ = 0.

The classMS of all MS-algebras forms a variety. The
members of the subvarietyM of MS defined by the
identity

(4) x = x◦◦

are called de Morgan algebras and the members of the
subvarietyK of M defined by the identity

(5) x∧ x◦ ≤ y∨ y◦

are called Kleene algebras. The subvarietyK2 of MS
is defined by the additional two identities:

(6) x∧ x◦ = x◦◦∧ x◦,
(7) x∧ x◦ ≤ y∨ y◦.

The classSof all Stone algebras is a subvariety ofMS
and is characterized by the identity

(8) x∧ x◦ = 0.

The subvarietyB of MS characterized by the identity

(9) x∨ x◦ = 1

is called the class of Boolean algebras.

A generalized de Morgan algebra (orGM-algebra) is
a universal algebra(L;∨,∧,− ,0,1) where(L;∨,∧,0,1) is
a bounded lattice and− the unary operation of involution
satisfies the identities:

(10) x = x−−
,

(11) (x∧ y)− = x−∨ y−,
(12) 1− = 0.

A generalized Kleene algebra (GK-algebra)L is aGM-
algebra satisfying the identity.

(13) x∧ x− ≤ y∨ y−.

A modular GM-algebra L is GM-algebra where
(L;∨,∧,0,1) is a modular lattice.

A generalizedMS-algebra (or GMS-algebra) is a
universal algebra(L;∨,∧,◦ ,0,1) where(L;∨,∧,0,1) is a
bounded lattice and the unary operation◦ satisfies the
identities:

(14) x = x◦◦,
(15) (x∧ y)◦ = x◦∨ y◦,
(16) 1◦ = 0.

A modular GMS-algebra is a GMS-algebra
(L;∨,∧,◦ ,0,1) where L = (L;∨,∧,0,1) is a modular
lattice.

The classGMS of all GMS-algebras forms a variety
and containing the class of all modularGMS-algebras and
the latter containing the classMS of all MS-algebras.

The main immediate consequences of these axioms are
summarized in the following result (see [9]).
Lemma 2.1.Let L be aGMS-algebra. Then we have

(1) 0◦ = 1,
(2) x ≤ y ⇒ x◦ ≥ y◦,
(3) x◦ = x◦◦◦,
(4) (x∨ y)◦ = x◦∧ y◦,
(5) (x∧ y)◦◦ = x◦◦∧ y◦◦,
(6) (x∨ y)◦◦ = x◦◦∨ y◦◦.

3 Principal generalizedK2-algebras

In this section we give a simple triple construction of a
principalGK2-algebra from a triple(K,D,ϕ), whereK is
a GK-algebra,D is a bounded lattice andϕ : K → D is a
lattice homomorphism ofK into D.

Firstly we introduce certainGMS-algebras, which are
called generalizedK2-algebras (brieflyGK2-algebras).
Definition 3.1. A GK2-algebra is aGMS-algebra L
satisfying

(1) x∧ x◦ = x◦◦∧ x◦,
(2) x∧ x◦ ≤ y∨ y◦.

The classGK2 of all GK2-algebras contains the class
K2 of all K2-algebras.

A modularGK2-algebraL is aGK2-algebra, whenever
L is a modular lattice. The classmGK2 of all modular
GK2-algebras contains the classK2 and the class of all
modularS-algebras.

For anyGK2-algebraL, we have two important subsets
of L which play basic roles of this paper, namelyL◦◦ =
{x ∈ L : x = x◦◦}, the set of all closed elements ofL and
D(L) = {x ∈ L : x◦ = 0}, the set of all dense elements of
L. One can observe the following.
Lemma 3.2.Let L ∈ GK2. Then
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(1) L◦◦ = {x ∈ L : x = x◦◦} is aGK-algebra,
(2) D(L) = {x ∈ L : x◦ = 0} is a filter ofL.

Also, we have two other important subsets of a
GK2-algebraL which are given in the following Lemma.
Lemma 3.3.Let L ∈ GK2. Then

(1) L∧ = {x∧x◦ : x ∈ L}= {x ∈ L : x ≤ x◦} is an ideal of
L,

(2) L∨ = {x∨ x◦ : x ∈ L} = {x ∈ L : x ≥ x◦} is a filter of
L. MoreoverD(L)⊆ L∨.

Proof. (1). Clearly, 0∈ L∧. Let x,y ∈ L∧. Thenx ≤ x◦ and
y ≤ y◦. By Definition 3.1(2), we get
x = x∧x◦ ≤ y∨y◦ = y◦. It follows thatx◦ ≥ y◦◦ ≥ y. Then
x◦ ∧ y◦ ≥ x,y implies (x ∨ y)◦ = x◦ ∧ y◦ ≥ x ∨ y. Then
x∨ y ∈ L∧. Let x ∈ L∧ be such thatz ≤ x for somez ∈ L.
Thenz ≤ x ≤ x◦ ≤ z◦. Hencez ∈ L∧. ThenL∧ is an ideal
of L.
(2). By duality of (1), we get thatL∨ is a filter of L. Let
x ∈ D(L). Then x = x ∨ x◦ ∈ L∨, as x◦ = 0. Therefore
D(L)⊆ L∨

Now we consider certain algebras of the class ofGK2-
algebras which the so-called principalGK2-algebras.
Definition 3.4.A GK2-algebraL is called a principalGK2-
algebra if it satisfies the following conditions:

(1) The filterD(L) is principal, i.e. there exists an element
d ∈ L such thatD(L) = [d),

(2) (x∧ y)∨d = (x∨d)∧ (y∨d) for everyx,y ∈ L, i.e.d
is a distributive element ofL,

(3) x = x◦◦∧ (x∨d) for everyx ∈ L.

Clearly, the class of all principalGK2-algebras contains the
classGK of all GK-algebras and the class of all principal
modularS-algebras.
Definition 3.5. An (abstract) principalGK2-triple is
(K,D,ϕ), where

(1) K = (K;∨,∧,◦ ,0K ,1K) is aGK-algebra,
(2) D = (D;∨,∧,0D,1D) is a bounded lattice,
(3) ϕ : K → D is a (0,1)-lattice homomorphism fromK

into D andϕ(a) = 0D for anya ∈ K∧.

Let L be a principalGK2-algebra with the smallest
dense elementd. Define the mapϕ(L) : L◦◦ → [d) by
ϕ(L)(a) = a∨d for everya ∈ L◦◦.
Lemma 3.6. Let L be a principalGK2-algebra with the
smallest dense elementd. Then (L◦◦

, [d),ϕ(L)) is a
principalGK2-triple.
Proof. By Lemma 3.2(1),L◦◦ is a GK-algebra and by
Lemma 3.2(2),D(L) = [d) is a bounded lattice. It is easy
to observe thatϕ(L) is a(0,1)-lattice homomorphism. So
we prove only thatϕ(L)(x) = d for any x ∈ L◦◦∧. Let
x ∈ L◦◦∧. Thenx = a∧a◦ for somea ∈ L◦◦.

ϕ(L)(a∧a◦) = (a∧a◦)∨d

= (a∧a◦)∨ (d∨d◦) asd◦ = 0

= d∨d◦ by (2) of definition 3.1 (2)

= d.

Therefore(L◦◦
, [d),ϕ(L)) is a principalGK2-triple.

We say that(L◦◦
, [d),ϕ(L)) the principalGK2-triple

associated withL.

Now we construct principalGK2-algebras from
principalGK2-triples, which is one of the main results of
this paper.
Theorem 3.7. Let (K,D,ϕ) be a principalGK2-triple.
Then

L = {(a,x) : a ∈ K,x ∈ D,x ≤ ϕ(a)}
is a principalGK2-algebra if we define

(a,x)∨ (b,y) = (a∨b,x∨ y)

(a,x)∧ (b,y) = (a∧b,x∧ y)

(a,x)◦ = (a◦,ϕ(a◦))
1L = (1K ,1D)

0L = (0K ,0D).

Moreover,L00 ∼= K andD(L)∼= D.
Proof. ClearlyL is a sublattice ofK×D. It is observed that
0L = (0K ,0D) and 1L = (1K ,1D) are the smallest and the
greatest elements ofL respectively. ThenL is a bounded
lattice. Now for every(a,x),(b,y) ∈ L, we have

(a,x)∧ (a,x)◦◦ = (a,x)∧ (a◦◦,ϕ(a◦◦)) =
(a∧a◦◦,x∧ϕ(a◦◦)) = (a,x).

Then(a,x)≤ (a,x)◦◦. Also, we have

[(a,x)∧ (b,y)]◦ = ((a∧b)◦,ϕ((a∧b)◦))

= (a◦∨b◦,ϕ(a◦)∨ϕ(b◦))
= (a,x)◦∨ (b,y)◦,

and

1◦L = 0L.

ThereforeL is a GMS-algebra. Now we prove thatL is a
GK2-algebra. Recallϕ(c) = 0D, ∀c ∈ K∧. For every
(a,x) ∈ L, we have

(a,x)∧ (a,x)◦ = (a∧a◦,x∧ϕ(a◦))
= (a∧a◦,x∧ϕ(a)∧ϕ(a◦)) asx ≤ ϕ(a)
= (a∧a◦,x∧ϕ(a∧a◦))

= (a∧a◦,x∧0D) asa∧a◦ ∈ K∧

= (a∧a◦,0D),

(a,x)◦◦∧ (a,x)◦ = (a∧a◦,ϕ(a)∧ϕ(a◦))
= (a∧a◦,x∧ϕ(a∧a◦))

= (a∧a◦,0D) asa∧a◦ ∈ K∧
.

Then(a,x)∧ (a,x)◦ = (a,x)◦◦ ∧ (a,x)◦. Similarly we can
deduce that(a,x)∧ (a,x)◦ ≤ (b,y)∨ (b,y)◦. To prove that
theGK2-algebraL is principal, we firstly proceed to prove
thatL◦◦ is aGK-algebra.

L◦◦ = {(a,x) ∈ L : (a,x)◦◦ = (a,x)}

= {(a,x) ∈ L : (a◦◦,ϕ(a◦◦)) = (a,x)}

= {(a,x) ∈ L : a ∈ K,x ∈ D,x = ϕ(a)}
= {(a,ϕ(a)) : a ∈ K}.
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ObviouslyL◦◦ ∼= K under the isomorphism(a,ϕ(a))→ a.
It follows that L◦◦ is a GK-algebra. Now we prove that
D(L) is a principal filter ofL.

D(L) = {(a,x) ∈ L : (a,x)◦ = (0K ,0D)}

= {(a,x) ∈ L : (a◦,ϕ(a◦)) = (0K ,0D)}

= {(1K ,x) : x ∈ D}

Clearly D(L) ∼= D under the isomorphism(1K ,x) → x.
Then(1K ,0D)→ 0D implies that(1K ,0D)) is the smallest
dense element ofL. SoD(L) = [(1K ,0D))
Now, we prove that(1K ,0D) is a distributive element ofL.
For any(a,x),(b,y) ∈ L, we have

((a,x)∧ (b,y)) ∨ (1K ,0D) =

= ((a∧b)∨1K,(x∧ y)∨0D)

= ((a∨1K)∧ (b∨1K),(x∨0D)∧ (y∨0D))

= (a∨1K,x∨0D)∧ (b∨1K,y∨0D)

= ((a,x)∨ (1K ,0D))∧ ((b,y)∨ (1K,0D)).

Also, we get

(a,x)◦◦∧ ((a,x)∨ (1K ,0D)) = (a,ϕ(a))∧ (a∨1K,x∨0D)

= (a∧ (a∨1K),ϕ(a)∧ x))

= (a,x) asx ≤ ϕ(a).

ThereforeL is a principal GK2-algebra. The proof is
complete.

Corollary 3.8. Let L be a principal GK2-algebra
constructed from the principalGK2-triple (K,D,ϕ). Then

(1) L∨ = {(a,x) ∈ L : a ∈ K∨},
(2) L∧ = {(a,0D) ∈ L : a ∈ K∧}.

Corollary 3.9. Let L be a principal GK2-algebra
constructed from the principalGK2-triple (K,D,ϕ). Then

(1) L is a modularGK2-algebra, wheneverK is a modular
GK-algebra andD is a modular lattice,

(2) L is aK2-algebra, wheneverK is a Kleene algebra and
D is a distributive lattice,

(3) L is a modularS-algebra, wheneverK is a Boolean
algebra andD is a modular lattice,

(4) L is a Stone algebra, wheneverK is a Boolean algebra
andD is a distributive lattice.

We shall say that the principalGK2-algebraL from
Theorem 3.7 is associated with the principalGK2-triple
(K,D,ϕ) and the construction ofL described in Theorem
3.7 will be called a principalGK2-construction.

We illustrate the principalGK2-construction on the
following example.
Example 3.10.Let K be the three-elementGK-algebra

and letD be the DiamondM5 (see Figure 1).

Define a homomorphismϕ : K → D by the rule

ϕ(0) = ϕ(a) = 0 and ϕ(1) = 1.

DK

❝

0

❝1

❝x ❝ y❝z

❝

0

❝a◦ = a

❝1

Fig. 1: K is a Kleene algebra and D is a bounded modular lattice

Then (K,D,ϕ) is a principal GK2-triple and by the
principal GK2-construction we obtain a principal
GK2-algebraL such that

L = {(0,0),(a,0),(1,0),(1,x),(1,z),(1,y),(1,1)}

and
(0,0)0 = (1,1),(a,0)0 = (a,0),

(1,0)0 = (1,x)0 = (1,z) = (1,y)0 = (1,1)0 = (0,0).

The algebraL is represented in Figure 2. The shaded
elements form aGK-algebra L00 which is obviously
isomorphic toK. One can also observe that the filterD(L)
is isomorphic to the given latticeD. Moreover, the
homomorphism ϕ(L) : L00 → D(L) defined by
ϕ(L)(c,ϕ(c)) = (c,ϕ(c)) ∨ (1,0) is a
(0,1)-homomorphism andϕ(L)(a,0) = (0,0) for all
a ∈ K∧. Hence the triple(L00

,D(L),ϕ(L)) is a principal
GK2-triple.

L

D(L)

❝

(1,0)

❝
(1,y)

❝(1,x)

❝s
(1,1)

❝(1,z)

❝s

(0,0)

❝s

(a,0)

Fig. 2: L is theGK2-algebra associated with(K,D,ϕ)

It is observed in the following Theorem that every
principal GK2-algebra can be obtained by the principal
GK2-construction.
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Theorem 3.11.Let L be a principalGK2-algebra with the
smallest dense elementd. Let (L◦◦

, [d),ϕ(L)) be a
principalGK2-triple associated withL. Then the principal
GK2-algebra L1 associated with (L◦◦

, [d),ϕ(L)) is
isomorphic toL.

Proof. Define the mapf : L → L1 by f (x) = (x◦◦,x∨ d)
for everyx ∈ L. Sincex∨ d ≤ x◦◦ ∨ d = ϕ(L)(x◦◦), then
f (x) ∈ L1.
Now for anyx,y ∈ L, we have

f (x∧ y) = ((x∧ y)◦◦,(x∧ y)∨d)

= (x◦◦∧ y◦◦,(x∨d)∧ (y∨d)) by de f inition 3.4(3)

= (x◦◦,x∨d)∧ (y◦◦,y∨d)

= f (x)∧ f (y),

and

f (x∨ y) = ((x∨ y)◦◦,(x∨ y)∨d)

= (x◦◦∨ y◦◦,(x∨d)∨ (y∨d))

= (x◦◦,x∨d)∨ (y◦◦,y∨d)

= f (x)∨ f (y),

also

f (x◦) = (x◦◦◦,x◦∨d)

= (x◦,ϕ(L)(x◦))
= ( f (x))◦.

Therefore f is a homomorphism ofGK2-algebras. To
prove that f is an injective mapping, suppose
f (x) = f (y). Then we havex◦◦ = y◦◦ andx∨ d = y∨ d.
Consequently, by Definition 3.4(3), we get

x = x◦◦∧ (x∨d) = y◦◦∧ (y∨d) = y.

Now we prove thatf is a surjective map. Let(a,x) ∈ L1.
Set z = a∧ x. Sincex ≤ ϕ(L)(a),a ∈ L◦◦ andx ∈ D(L),
then we have

f (z) = ((a∧ x)◦◦,(a∧ x)∨d)

= (a◦◦∧ x◦◦,(a∨d)∧ (x∨d)) by de f inition 3.4(3)

= (a∧1,(a∨d)∧ x) asa◦◦ = a,x◦◦ = 1 andx ≥ d

= (a,ϕ(L)(a)∧ x)

= (a,x).

Thereforef is an isomorphism andL ∼= L1.

4 Isomorphisms of principal GK2-algebras

In this section we define an isomorphism between two
principal GK2-triples and we show that two principal
GK2-algebras are isomorphic if and only if their
associated principalGK2-triples are isomorphic.

Definition 4.1. An isomorphism of the principal
GK2-triples (K,D,ϕ) and (K1,D1,ϕ1) is a pair (α,β ),

where α is an isomorphism ofK and K1, β is an
isomorphism ofD andD1 such that the diagram

ϕ
K −→ D

α ↓ ↓ β
K1 −→ D1

ϕ1

commutes. The following Theorem shows that the
principal GK2-algebras are represented by the principal
GK2-triples uniquely.

Theorem 4.2. Two principal GK2-algebras are
isomorphic if and only if their associated principal
GK2-triples are isomorphic.

Proof. Let g : L1 → L2 be an isomorphism of principal
GK2-algebras. It is obvious that(g|L◦◦

1 ,g|D(L1)) is an
isomorphism between the principalGK2-triples
(L◦◦

1 ,D(L1),ϕ(L1)) and(L◦◦
2 ,D(L2),ϕ(L2)), whereg|L◦◦

1
and g|D(L1) are restrictions ofg to L◦◦

1 and D(L1)
respectively. Conversely, let(K1,D1,ϕ1) and(K2,D2,ϕ2)
be the principal GK2-triples associated to principal
GK2-algebrasL1 andL2 respectively and let

(α,β ) : (K1,D1,ϕ1)→ (K2,D2,ϕ2)

be an isomorphism of principalGK2-triples. Let us denote
by L

′

1 and L
′

2 the principalGK2-algebras associated to
principal GK2-triples (K1,D1,ϕ1) and (K2,D2,ϕ2),
respectively. Consider the mappingg : L

′

1 → L
′

2 defined
by the ruleg(a,x) = (α(a),β (x)). It is clear thatg is a
(0,1)-lattice isomorphism.

Moreover, we have

g((a,x)◦) = g(a◦,ϕ1(a
◦))

= (α(a◦),β (ϕ1(a
◦)))

= (α(a◦),ϕ2(α(a◦)))

= ((α(a))◦,ϕ2(α(a))◦)

= (α(a),β (x))◦

= (g(a,x))◦

Thereforeg is an isomorphism of principalGK2-algebras.
The next Theorem 4.3 together with the previous
Theorem 4.2 and Theorem 3.11 show that there is a
one-to-one correspondence between principal
GK2-algebras and principalGK2-triples.

Theorem 4.3.Let (K,D,ϕ) be a principalGK2-triple and
let L be its associated principalGK2-algebra. Then

(L00
,D(L),ϕ(L)) ∼= (K,D,ϕ).

Proof. From Theorem 3.7, we have the two isomorphisms
α : L◦◦ → K defined byα(a,ϕ(a)) = a andβ : D(L) →
D defined byβ (1K ,x) = x. It remains to prove that the
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diagram

ϕ(L)
L◦◦ −→ D(L)

α ↓ ↓ β
K1 −→ D

ϕ
is commutative. Letz ∈ L◦◦. Thenz = (a,ϕ(a)) for some
a ∈ K and we have

β (ϕ(L)(z)) = β ((a,ϕ(a))∨ (1K ,0D))

= β (a∨1K,ϕ(a)∨0D)

= β (1K ,ϕ(a))
= ϕ(a)
= ϕ(α(a,ϕ(a))).

The proof is complete.

5 Congruence pairs of principal
GK2-algebras

In this section we introduce the concept of congruence
pairs in principalGK2-algebras. Also we characterize any
congruence relation on a principalGK2-algebra in terms
of congruence pair.

Let L be aGK2-algebra. For a congruence relationθ
on L, let θL◦◦ andθD(L) are denote the restrictions ofθ to
L◦◦ andD(L) respectively. Obviously,θL◦◦ andθD(L) are
congruence relations onL◦◦ and D(L) respectively. We
useCon(L) to denote the lattice of all congruences onL.
Also we use△ and∇ to denote the identity and universal
congruences of L respectively. Thus
(θL◦◦ ,θD(L)) ∈Con(L◦◦)×Con(D(L)).

Now we introduce the notion of congruence pairs for
principalGK2-algebras.

Definition 5.1. Let L be a principalGK2-algebra with a
smallest dense elementd. An arbitrary pair
(θ1,θ2) ∈ Con(L◦◦) ×Con(D(L)) is called congruence
pair ofL if (a,b) ∈ θ1 implies(a∨d,b∨d) ∈ θ2.

From Definition 5.1, we immediately obtain the
following results

Lemma 5.2. Let L be a principalGK2-algebra with a
smallest dense elementd. Then we have the following

(1) (△,Φ) is a congruence pairs ofL, for everyΦ ∈
Con(D(L)),

(2) (ψ ,∇) is a congruence pairs ofL, for every
ψ ∈Con(L◦◦).

For the principalGK2-algebra, we have the following
lemma.

Lemma 5.3. Let L be a principalGK2-algebra with a
smallest dense elementd. Let (θ1,θ2) be a congruence

pair. Then (a,b) ∈ θ1 and (x,y) ∈ θ2 imply
(a∨ x,b∨ y) ∈ θ2.

Proof. Let (a,b) ∈ θ1 and(x,y) ∈ θ2. Then by the above
Definition 5.1, we get(a∨ d,b∨ d) ∈ θ2. It follows that
(a∨d∨x,b∨d∨y)∈ θ2. Sinced ≤ x,y, then(a∨x,b∨y)∈
θ2. In the following theorem, we give a characterization for
congruence pairs of a principalGK2-algebra. This is a one
of the main results of this paper.

Theorem 5.4.Let L be a principalGK2-algebra with a
smallest dense elementd. Then every congruence relation
θ of L determines a congruence pair(θL◦◦ ,θD(L)).
Conversely, every congruence pair(θ1,θ2) uniquely
determines a congruence relationθ on L satisfying
θL◦◦ = θ1 andθ2 = θD(L) by the rule

(x,y) ∈ θ ⇔ (x◦◦,y◦◦) ∈ θ1 and(x∨d,y∨d) ∈ θ2

Proof. Let θ be a congruence onL. Then it is clear that
(θL◦◦ ,θD(L)) is a congruence pair. Conversely, Let(θ1,θ2)
be a congruence pair and letθ be the relation define on
L by the above rule. Clearlyθ is an equivalent relation
on L. We proceed to prove thatθ is a lattice congruence.
Let (a,b),(a1,b1) ∈ θ . Then(a◦◦,b◦◦),(a◦◦1 ,b◦◦1 ) ∈ θ1 and
(a∨ d,b∨ d),(a1 ∨ d,b1 ∨ d) ∈ θ2. Sinceθ1 ∈ Con(L◦◦)
andθ2 ∈Con(D(L)), then we get

((a∧a1)
◦◦
,(b∧b1)

◦◦) = (a◦◦∧a◦◦1 ,b◦◦∧b◦◦1 ) ∈ θ1,

((a∧a1)∨d,(b∧b1)∨d)

= ((a∨d)∧ (a1∨d) , (b∨d)∧ (b1∨d)) ∈ θ2.

and

((a∨a1)
◦◦
,(b∨b1)

◦◦) = (a◦◦∨a◦◦1 ,b◦◦∨b◦◦1 ) ∈ θ1,

((a∨a1)∨d,(b∨b1)∨d)

= ((a∨d)∨ (a1∨d) , (b∨d)∨ (b1∨d)) ∈ θ2.

It follows that (a ∧ a1,b ∧ b1), (a ∨ a1,b ∨ b1) ∈ θ ,
and thereforeθ is preserved by the meet and join
operations of L. In order to show thatθ is preserved by
the unary operation◦, we let (a,b) ∈ θ . Then
(a◦◦,b◦◦) ∈ θ1. Hence(a◦,b◦) ∈ θ1. By the Definition of
congruence pair, (a◦ ∨ d,b◦ ∨ d) ∈ θ2. Then
(a◦◦◦,b◦◦◦) ∈ θ1 and (a◦ ∨ d,b◦ ∨ d) ∈ θ2 imply that
(a◦,b◦) ∈ θ . Thereforeθ is a congruence onL.
Now, we show thatθL◦◦ = θ1 and θD(L) = θ2. Let
a,b ∈ L◦◦ be such that(a,b) ∈ θ1. Then(a◦◦,b◦◦) ∈ θ1.
By the Definition of congruence pair, we have
(a ∨ d,b ∨ d) ∈ θ2. Hence (a,b) ∈ θ . It follows that
(a,b) ∈ θL◦◦ and θ ≤ θL◦◦ . Conversely, let(a,b) ∈ θL◦◦ .
Then (a,b) ∈ θ implies (a,b) = (a◦◦,b◦◦) ∈ θ1. Thus
θL◦◦ ≤ θ1 Then θ1 = θL◦◦ . The equality θ2 = θD(L)
follows straight from the definition ofθ . For the
uniqueness ofθ . Let θ andθ́ be two congruence relation
on L with θL◦◦ = θ́L◦◦ = θ1 andθD(L) = θ́D(L) = θ2. Let
(x,y) ∈ θ . Then (x◦◦,y◦◦) ∈ θL◦◦ and
(x ∨ d,y ∨ d) ∈ θD(L). Hence (x◦◦,y◦◦) ∈ θ́L◦◦ and

(x ∨ d,y ∨ d) ∈ θ́D(L). Therefore (x◦◦,y◦◦) ∈ θ́ and
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(x ∨ d,y ∨ d) ∈ θ́ . Then we deduce that
(x,y) = (x◦◦ ∧ (x ∨ d),y◦◦ ∧ (y ∨ d)) ∈ θ́ . Henceθ ≤ θ́ .
Also, we can get́θ ≤ θ . Thenθ = θ́ .
A one-to-one correspondence between the congruences
lattice of a principalGK2-algebraL and the set of all
congruence pairs ofL is obtained immediately by the next
corollary.
Corollary 5.5. Let L be a principalGK2-algebra with a

smallest dense elementd. Then the set A(L) of
congruence pairs of L is a sublattice of
Con(L◦◦) × Con(D(L)) and θ 7→ (θL◦◦ ,θD(L)) is an
isomorphism ofCon(L) andA(L).
Proof. Let (θ1,θ2),(ψ1,ψ2) ∈ A(L). Then, it is easy to

verify that(θ1∧ψ1,θ2∧ψ2) ∈ A(L). Now, we proceed to
show that(θ1∨ψ1,θ2∨ψ2) ∈ A(L). Let (a,b) ∈ θ1∨ψ1.
Then there is a sequencea = a0,a1, ...,an = b in L◦◦ such
that (ai−1,ai) ∈ θ1 ∪ ψ1, whenever 1≤ i ≤ n. Then
(ai−1 ∨ d,ai ∨ d) ∈ θ2 ∪ ψ2 by Definition 3.1. Thus we
have a ∨ d = a0 ∨ d,a1 ∨ d, · · · ,an ∨ d = b ∨ d ∈ D(L).
The above result leads to(a ∨ d,b ∨ d) ∈ θ2 ∨ ψ2 and
hence(θ1 ∨ ψ1,θ2 ∨ ψ2) ∈ A(L). Thus we conclude that
A(L) is a sublattice ofCon(L◦◦)×Con(D(L)). The last
part of the Corollary is obvious and the proof is finished.
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