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A general solution to the field equations of thermoelastic material with one relax-
ation time (Lord and Shulman theory) with voids under the dependence of modulus of
elasticity and thermal conductivity on reference temperature has been obtained in the
transformed domain using Laplace and Fourier transforms due to mechanical and ther-
mal sources.The uniformly or linearly (instantaneous or continuous)distributed sources
have been taken to show the utility of the solution obtained. The transformed solutions
are inverted using a numerical inversion technique.The effect of dependence of modu-
lus of elasticity on the normal stress, changes in volume fraction field and temperature
distribution have been depicted graphically for Lord and Shulman theory(L-S)and cou-
pled theory(CT) of thermoelasticity, with voids for a particular model.Some particular
cases are also deduced from the present formulation
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1 Introduction

Biot (1956) formulated the theory of coupled thermoelasticity to eliminate the paradox
inherent in the classical uncoupled theory that elastic changes have no effect on the tem-
perature. The heat equations for both the theories, however, are of the diffusion type,
predicting infinite speeds of propagation for heat waves contrary to physical observations.
Lord and Shulman (1967) introduced the theory of generalized thermoelasticity with one
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ralaxation time by postulating new law of heat conduction to replace the classical Fourier
law. This law contains the heat flux vector as well as its time derivative. It contains also
a new constant that act as a relaxation time. The heat equation of this theory is of the
wave type, ensuring finite speeds of propagation for heat and elastic waves. The remaining
governing equations for this theory, namely, the equation of motion and the constitutive
relations remain the same as those for the coupled and uncoupled theories. This theory was
extended by Dhaliwal and Sherief (1980) to general anisotropic media in the presence of
heat sources.

The theory of linear elastic materials with voids is one of the most important general-
izations of the classical theory of elasticity. This theory has practical use for investigating
various types of geological and biological materials for which elastic theory is inadequate.
This theory is concerned with elastic materials consisting of a distribution of small pores
(voids), in which the voids volume is included among the kinematics variables and in the
limiting case of volume tending to zero, the theory reduces to the classical theory of elas-
ticity.

A non-linear theory of elastic materials with voids was developed by Nunziato and
Cowin (1979). Later, Cowin and Nunziato (1983) developed a theory of linear elastic ma-
terials with voids for the mathematical study of the mechanical behavior of porous solids.
They considered several applications of the linear theory by investigating the response of
the materials to homogeneous deformations, pure bending of beams and small amplitudes
of acoustic waves. Considerable amount of work has been done in the linear theory of
elastic materials with voids.

The first investigation in the theory of thermoelastic materials with voids are due to
Nunziato and Cowin (1979) and Jaric and Golubovic (1979). Iesan (1986)developed the
theory of thermoelastic material with voids and established uniqueness, reciprocal and vari-
ational theorem. Different authors has been discussed different types of problem in linear
thermoelastic materials with voids (1987, 1990, 2001, 2002, 2004, 2005).

Most of the investigation were done under the assumption of temperature-independent
material properties, which limit the applicability of the solutions obtained to certain ranges
of temperature. Modern structural elements are often subjected to temperature change of
such magnitude that their material properties may be longer be regarded as having constant
values even in an approximate sense. At high temperature the materials characteristics such
as modulus of elasticity,thermal conductivity and the coefficient of linear thermal expansion
are no longer constants.The thermal and mechanical properties of the materials vary with
temperature, so the temperature-dependent of the material properties must be taken into
consideration in the thermal stress analysis of these elements. Tanigawa (1995)investigated
thermoelastic problems for non-homogeneous structural material. Ezzat et al (2004, 2001)
investigated the dependence of modulus of elasticity on reference temperature in general-
ized thermoelasticity and obtained interesting results. Youssef (2005) used the equation of
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generalized thermoelasticity with one relaxation time with variable modulus of elasticity
and the thermal conductivity to solve a problem of an infinite material with spherical cavity.

In the present investigation the equations of generalized thermoelastic with voids, with
the dependence of modulus of elasticity and thermal conductivity on the reference temper-
ature are used to obtain the components of displacement, stress, change in volume fraction
field and temperature distribution due to distributed(instantaneous) sources.

2 Basic Equations

Following Lord and shulman (1967), Cowin and Nunziato (1983), the field equations and
constitutive relations in thermoelastic body with voids without body forces, heat sources
and extrinsic equilibrated body force can be written as:

(λ+ 2µ)∇(∇ · −→u )− µ(∇×∇×−→u ) + b∇ϕ− β∇T = ρ
∂2−→u
∂t2

, (2.1)

α∇2ϕ− b∇ · −→u − ξ1ϕ− ω0
∂ϕ

∂t
+mT = ρψ

∂2ϕ

∂t2
, (2.2)

K∇2T − βT0(
∂

∂t
+ τ0

∂2

∂t2
)∇ · −→u −mT0(

∂

∂t
+ τ0

∂2

∂t2
)ϕ = ρCe(

∂

∂t
+ τ0

∂2

∂t2
)T, (2.3)

tij = λ uk,kδij + µ(ui,j + uj,i) + bϕδij − βTδij , (2.4)

where λ, µ- Lame’s constants,α,b,ξ1,ω0,m,ψ-material constants due to presence of voids,
T- the temperature distribution −→u - displacement vector, β = (3λ + 2µ)αt, αt- coeffi-
cient of linear thermal expansion, ρ, Ce- density and specific heat respectively, K- thermal
conductivity,ϕ- change in volume fraction field, T0- reference temperature, tij -components
of stress tensor, τ0- the relaxation time, δij- Kronecker delta,

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
, ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

3 Formulation And Solution of The Problem

We consider a homogeneous, isotropic, generalized thermoelastic half space with voids
in the undeformed temperature T0. The rectangular cartesian co-ordinate system (x, y, z)

having origin on the surface z = 0 with z− axis pointing normally in to the medium is
introduced.For two dimensional problem, we assume the displacement vector as

−→u = (u, 0, w) (3.1)
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Our aim is to investigate the effect of temperature dependence of modulus of elasticity
keeping the other elastic and thermal parameters as constant. Therefore we may assume

λ = λ0(1− α∗T0), µ = µ0(1− α∗T0), β = β0(1− α∗T0), ξ1 = ξ10(1− α∗T0),

m = m0(1− α∗T0), b = b0(1− α∗T0), α = α0(1− α∗T0), ψ = ψ0(1− α∗T0),

K = K0(1− α∗T0), ω0 = ω10(1− α∗T0), (3.2)

where λ0, µ0, β0, ξ10, m0, b0, α0, ψ0, K0, ω10 are considered constants, α∗ is called em-
pirical material constant, in case of the reference temperature independent of modulus of
elasticity and thermal conductivity α∗ = 0. To facilitate the solution, following dimension-
less quantities are introduced:

x′ =
ω∗
1

c1
x, z′ =

ω∗
1

c1
z, u′ =

ω∗
1

c1
u, w′ =

ω∗
1

c1
w,

t′33 =
t33
µ0
, t′31 =

t31
µ0
, ϕ′ =

ω∗2
1 ψ0

c21
ϕ,

t′ = ω∗
1t, τ

′

o = ω∗
1τo, τ

′

1 = ω∗
1τ1, a′ =

ω∗
1

c1
a,

T ′ =
T

T0
, P ′

1 =
P1

µ0
, P ′

2 =
P2

T0
, (3.3)

where

c1 = (
λ0 + 2µ0

ρ
)

1
2 and ω∗

1 =
c21
κ

Equations (2.1)-(2.3), with the help of equations (3.1)-(3.3) may be recast into the dimen-
sionless form after suppressing the primes as:

∇2u+ a1
∂e

∂x
+ a2

∂ϕ

∂x
− a3

∂T

∂x
= a4

∂2u

∂t2
, (3.4)

∇2w + a1
∂e

∂z
+ a2

∂ϕ

∂z
− a3

∂T

∂z
= a4

∂2w

∂t2
, (3.5)

∇2ϕ− a5e− a6ϕ− a7
∂ϕ

∂t
+ a8T = a9

∂2ϕ

∂t2
, (3.6)

∇2T − ϵ1(
∂

∂t
+ τ0

∂2

∂t2
)e− ϵ2(

∂

∂t
+ τ0

∂2

∂t2
)ϕ = (

∂

∂t
+ τ0

∂2

∂t2
)T, (3.7)
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where

a1 =
λ0 + µ0

µ0
, a2 =

b0c
2
1

ω∗2
1 µ0ψ0

, a3 =
β0T0
µ0

, a4 =
ρc21A

∗

µ0
,

a5 =
b0ψ0

α0
, a6 =

ξ10c
2
1

ω∗2
1 α0

, a7 =
ω10κ

α0
, a8 =

m0T0ψ0

α0
,

a9 =
ρc21ψ0

α0
, ϵ1 =

β0c
2
1

K0ω∗
1

, ϵ2 =
m0c

4
1

K0ψ0ω∗3
1

,

with
A∗ =

1

(1− α∗T0)
, ρCe =

K

κ
,

also ϵ1, ϵ2 are the coupling constants and κ is the diffusivity. Using the expression re-
lating displacement componentsu(x, z, t) and w(x, z, t) to the scalar potential functions
ψ1(x, z, t) and ψ2(x, z, t) in dimensionless form

u =
∂ψ1

∂x
− ∂ψ2

∂z
, w =

∂ψ1

∂z
+
∂ψ2

∂x
, (3.8)

in equations (3.4)-(3.7) and applying the Laplace and Fourier transforms defined by

f̂(x, z, s) =

∫ ∞

o

e−stf(x, z, t)dt,

and

f̃(ξ, z, s) =

∫ ∞

−∞
eıξxf̂(x, z, s)dx, (3.9)

on resulting equations,and eliminatingψ̃1,ϕ̃,T̃ and ψ̃2,we obtain

(
d6

dz6
+A

d4

dz4
+B

d2

dz2
+ C)(ψ̃1, ϕ̃, T̃ ) = 0, (3.10)

(
d2

dz2
− λ24)ψ̃2 = 0, (3.11)

where
A =

1

b1
[b1(−3ξ2 − (f1 + f2))− a4s

2 + a2a5 − a3ϵ1f1],

B =
1

b1
[b1(3ξ

4 + 2ξ2(f1 + f2) + f1f2 − a8ϵ2f1) + s2(2a4ξ
2

+a4(f1 + f2))− a2(2ξ
2a5 + a5f1 − a8ϵ1f1)

+2ξ2a3ϵ1f1 − a3a5ϵ2f1 + a3ϵ1f1f2],
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C =
1

b1
[−b1ξ6 + ξ4(−b1(f1 + f2)− a4s

2 + a2a5 − a3ϵ1f1)

+ξ2(−b1f2f1 + a8ϵ2f1b1 − a4s
2(f1 + f2) + a2a5f1 − ϵ1a2a8f1

+a3a5ϵ2f1 − a3ϵ1f1f2) + s2(−a4f1f2 + a4a8ϵ2f1)],

with

b1 = 1 + a1, f1 = s+ τ0s
2, f2 = a6 + a7s+ a9s

2, λ24 = ξ2 + a4s
2.

The roots of the equations (3.10)and(3.11)are λℓ,(ℓ = 1, 2, 3, 4). Assuming the regularity
conditions, the solutions of equations may be written as

(ψ̃1, ϕ̃, T̃ ) = (
3∑

ℓ=1

Aℓ exp
−λℓz,

3∑
ℓ=1

dℓAℓ exp
−λℓz,

3∑
ℓ=1

eℓAℓ exp
−λℓz), (3.12)

ψ̃2 = A4 exp
−λ4z, (3.13)

where
dℓ =

a13cℓ1 − aℓ1cℓ3
a12cℓ3 − a13c12

, eℓ =
aℓ1c12 − a12cℓ1
a12cℓ3 − a13c12

,

and

aℓ1 = b1(λ
2
ℓ − ξ2)− a4s

2 , a12 = a2 , a13 = −a3 , cℓ1 = ϵ1f1(λ
2
ℓ − ξ2)

c12 = a10f1 , cℓ3 = (ξ2 − λ2ℓ) + f1 ; (ℓ = 1, 2, 3).

4 Boundary Conditions

The appropriate boundary conditions are

(i) t33 = −P1f1(x, t), (4.1)

(ii) t31 = 0, (4.2)

(iii)
∂ϕ

∂z
= 0, (4.3)

(iv) T = P2f2(x, t), (4.4)

where P1 is the magnitude of force,P2 is the constant temperature applied on the boundary
and f1(x, t) and f2(x, t) are known functions. Making use of equations (1.4),(3.2)-(3.3)and
(3.8)and applying the Laplace and Fourier transforms defined by(3.9) and substituting the
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value of ψ̃1,ϕ̃,T̃ ,and ψ̃2, from equations (3.12)and(3.13)in the boundary conditions (4.1)-
(4.4),we obtain the components of displacement, stress, change in volume fraction field
and temperature distribution as

ũ =
1

△
[P1f̃1(ξ, s)

3∑
ℓ=1

{(−ıξ)(△ℓ exp
−λℓz) + λ4△ℓ+6 exp

−λ4z}

+P2f̃2(ξ, s)
3∑

ℓ=1

{(−ıξ)(△ℓ+3 exp
−λℓz) + λ4△ℓ+9 exp

−λ4z}]

w̃ =
1

△
[P1f̃1(ξ, s)

3∑
ℓ=1

{−λℓ(△ℓ exp
−λℓz) + (−ıξ)△ℓ+6 exp

−λ4z}

+P2f̃2(ξ, s)

3∑
ℓ=1

{−λℓ(△ℓ+3 exp
−λℓz) + (−ıξ)△ℓ+9 exp

−λ4z}]

˜t33 =
1

△
[P1f̃1(ξ, s)

3∑
ℓ=1

{Rℓ(△ℓ exp
−λℓz) +R4△ℓ+6 exp

−λ4z}

+P2f̃2(ξ, s)

3∑
ℓ=1

{Rℓ(△ℓ+3 exp
−λℓz) +R4△ℓ+9 exp

−λ4z}]

˜t31 =
1

△
[P1f̃1(ξ, s)

3∑
ℓ=1

{qℓ(△ℓ exp
−λℓz) + q4△ℓ+6 exp

−λ4z}

+P2f̃2(ξ, s)
3∑

ℓ=1

{qℓ(△ℓ+3 exp
−λℓz) + q4△ℓ+9 exp

−λ4z}]

ϕ̃ =
1

△
[P1f̃1(ξ, s)

3∑
ℓ=1

dℓ△ℓ exp
−λℓz +P2f̃2(ξ, s)

3∑
ℓ=1

dℓ△ℓ+3 exp
−λℓz]

T̃ =
1

△
[P1f̃1(ξ, s)

3∑
ℓ=1

eℓ△ℓ exp
−λℓz +P2f̃2(ξ, s)

3∑
ℓ=1

eℓ△ℓ+3 exp
−λℓz] (4.5)

where

△ = (λ2d2e3 − λ3d3e2)(R1q4 −R4q1) + (λ3d3e1 − λ1d1e3)(R2q4 −R4q2)

+(λ1d1e2 − λ2d2e1)(R3q4 −R4q3),

△1 = q4(λ3d3e2 − λ2d2e3),

△2 = q4(λ1d1e3 − λ3d3e1),

△3 = q4(λ2d2e1 − λ1d1e2),
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△4 = q4(λ3d3R2 − λ2d2R3) +R4(λ2d2q3 − λ3d3q2),

△5 = (R4q1 −R1q4)λ3d3 + (R3q4 −R4q3)λ1d1,

△6 = (R1q4 −R4q1)λ2d2 + (R4q2 −R2q4)λ1d1,

△7 = −q1(λ2d2e3 − λ3d3e2),

△8 = −q2(λ3d3e1 − λ1d1e3),

△9 = −q3(λ1d1e2 − λ2d2e1),

△10 = (R1q2 −R2q1)λ3d3,

△11 = (R3q1 −R1q3)λ2d2,

△12 = (R2q3 −R3q2)λ1d1,

and

Rℓ =
((b2 + 2)λ2ℓ − b2ξ

2 + a2dℓ − a3eℓ)

A∗ , R4 =
2(ıξ)λ4
A∗ ,

qℓ =
2(ıξ)λℓ
A∗ , q4 =

−(ξ2 + λ24)

A∗ , b2 =
λ0
µ0

; (ℓ = 1, 2, 3.).

The corresponding expressions are obtained for mechanical source by taking P2 = 0 and
for thermal source by taking P1 = 0 in equation(4.5),respectively.

5 Applications

We take f1(x, t) and f2(x, t) as

(f1(x, t), f2(x, t)) =

{
(g1(x), g2(x))δ(t) for instantaneous source,

(g1(x), g2(x))H(t) for continuous source

(5.1)
where δ() is the Dirac delta function and H() is the Haviside distribution function,

g1(x) and g2(x) are the known function.
Applying the Laplace and Fourier transforms defined by equation(3.9) on equation (5.1)

we get

(f̃1(ξ, s), f̃2(ξ, s)) =

{
(g̃1(ξ), g̃2(ξ)) for instantaneous source,

(g̃1(ξ), g̃2(ξ))
1
s for continuous source

(5.2)

(I)Uniformly distributed source: In this case, the solution is obtained by using

(g1(x), g2(x)) =

{
1 if |x| ≤ a

0 if |x| > a
(5.3)
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Fourier transform of g1(x),g2(x) with respect to the pair (x; ξ) for the case of uniform strip
load of non-dimensional width 2a applied at z = 0 is given by

(g̃1(ξ), g̃2(ξ)) =
{

2 sin ξ a
ξ , ξ ̸= 0, (5.4)

(II)Linearly Distributed Source: In this case, the solution due to linearly distributed source
is obtained by using

(g1(x), g2(x)) =

{
1− |x|

a if |x| ≤ a

0 if |x| > a
(5.5)

Fourier transform of g1(x),g2(x) are given by

(g̃1(ξ, s), g̃2(ξ, s)) =
{

2[1−cos(ξ a)]
ξ2a ξ ̸= 0 (5.6)

The corresponding solutions are obtained for uniformly or linearly distributed source by
substituting the value of f̃1(ξ, s) and f̃2(ξ, s) from equations (5.2) in equation (4.5)with
the help of equations (5.4)and(5.6),respectively.

6 Particular Cases

(i)Taking A∗ = 1 in equation (4.5) and with the help of equation(5.2), we obtained the
corresponding expressions in generalized porous thermoelastic half-space without depen-
dence of modulus of elasticity for uniformly or linearly distributed source,respectively.
These results tally with those obtained by Kumar and Rani(2005) after some modification.
(ii)By putting τ0 = 0 in equation (4.5)and with the help of equations (5.2), we obtained
the corresponding expressions of the porous thermoelastic half-space with and without
dependence of modulus of elasticity,for CT theory due to uniformly or linearly distributed
source, respectively. These results are in aggrement with those if we solve the problem
directly in coupled thermoelasticity.
(iii) If we neglect the voids effect (α = b = ξ1 = m = ψ = ω0 = 0), in equa-
tions (4.5),and with the help of equations (5.2), we obtained the components of displace-
ment,stress, temperature distribution in generalized thermoelastic half-space with depen-
dence of modulus of elasticity by replacing values of △ with △∗, △ℓ with △∗

ℓ (ℓ =

1, 2, 4, 5, 7, 8, 10, 11), qℓ, eℓ, Rℓ, λℓ, Eℓ with q∗ℓ , e∗ℓ , R∗
ℓ , λ∗ℓ , E∗

ℓ (ℓ = 1, 2.) and
dℓ = q3 = e3 = R3 = λ3 = E3 = △3 = △6 = △9 = △11 = △12 = 0 (ℓ = 1, 2, 3.)
respectively, where

△∗ = q4(R
∗
2e

∗
1 −R∗

1e
∗
2) +R4(e

∗
2q

∗
1 − e∗1q

∗
2), △∗

1 = q4e
∗
2, △∗

2 = −q4e∗1,

△∗
4 = q4R

∗
2 − q∗2R4, △∗

5 = R4q
∗
1 −R∗

1q4, △∗
7 = −q∗1e∗2, △∗

8 = q∗2e
∗
1,

△∗
10 = R∗

1q
∗
2 −R∗

2q
∗
1 , R∗

ℓ =
((b2 + 2)λ∗2ℓ − b2ξ

2 − a3e
∗
ℓ )

A∗ , q∗ℓ =
2(ıξ)λ∗ℓ
A∗ ,
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e∗ℓ =
ϵ1f1(λ

∗2
ℓ − ξ2)

(λ∗2ℓ − ξ2)− f1
, E∗

ℓ = exp−λ∗
ℓ z, λ∗2ℓ =

−A+ (−1)ℓ+1
√
A2 − 4B

2
,

with

A =
−1

b1
[b1(2ξ

2 + f1) + a4s
2 + ϵ1a3f1],

B =
1

b1
[(b1ξ

2 + a4s
2)(ξ2 + f1) + ξ2ϵ1a3f1].

The above results are similar as those obtained by Kumar and Rani(2005)

7 Inversion of the transforms

The transformed expressions in equation(4.5) are inverted by using numerical inversion
technique given by Kumar and Ailawalia (2003)

8 Numerical Results and Discussion

Following Dhaliwal and Singh (1980) magnesium material was chosen for purposes of
numerical evaluations. The constants of the problem were taken as

λ = 2.17× 1010N/m2, µ = 3.278× 1010N/m2,K = 1.7× 102W/mdeg,

ρ = 1.74× 103Kg/m3, β = 2.68× 106N/m2deg, Ce = 1.04× 103J/Kgdeg,

T0 = 298K, ω∗
1 = 3.58× 1011/s

and the voids parameters are

ψ = 1.753× 10−15m2, α = 3.688× 10−5N, ξ1 = 1.475× 1010N/m2,

b = 1.13849× 1010N/m2, m = 2× 106N/m2deg, ω0 = .0787× 10−3N/m2s.

The comparison were carried out for

α∗ = .00051/K, P1 = P2 = 1, τ0 = 0.05.
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        Fig.1.    Variations of normal stressb  t33 for uniformly 
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Fig.4.   Variation  of  normal stress  t33  for 
             linearly  distributed  force (instantaneous).
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The comparison of values of normal stress t33, change in volume fraction field ϕ and
temperature distribution T with distance x for uniformly distributed source(UDS) and lin-
early distributed source(LDS) with and without dependence of modulus of elasticity are
shown graphically in figures 1-12, for coupled theory CT and Lord and Shulman theory
(L-S). The solid line,the small dashed lines, in graphs represents the variations of normal
stress t33, change in volume fraction field ϕ and temperature distribution T for coupled the-
ory with dependence of modulus of elasticity (CT-D) and Lord and Shulman theory with
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dependence of modulus of elasticity (LS-D)due to uniformly distributed source(UDS) and
linearly distributed source(LDS).The solid line with center symbol circle,the small dashed
lines with center symbol triangle, in graphs represents the variations of normal stress t33,
change in volume fraction field ϕ and temperature distribution T for coupled theory without
dependence of modulus of elasticity (CT-I) and Lord and Shulman theory without depen-
dence of modulus of elasticity (LS-I)due to uniformly distributed source(UDS) and linearly
distributed source(LDS). The results for a distributed sources(mechanical and thermal)are
presented for dimensionless width a = 0.6 for instantaneous source. The computations are
carried out for value of non-dimensional time t = 0.5. in the range 0 ≤ x ≤ 10 .
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  Fig.5. Variation of change in volume fraction field 
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   Fig.6. Variation of temperature distribution T for
               linearly distributed source (instantaneous).
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  Fig.7.   Variation of normal stress t33 for uniformly
                distributed source (instantaneous).
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Fig.8. Variation of Change in volume fraction field  

for uniformly distributed source(instantaneous).
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Fig.9.  Variation of temperature distribution T  for

 uniformly distributed source(instantaneous).
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        Fig.10.   Variation of Normal stress  t33 for linearly                  
                       distributed source  (instantaneous).
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   Fig.11.  Variation of Change in volume fraction field  

for linearly distributed source (instantaneous).
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      Fig.12.  Variation of  temperature distribution T 
                    for linearly distributed source (instantaneous).
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8.1 Mechanical distributed force

Fig.1. shows the variations of normal stress t33 for UDS with distance x.From this
figure we find that the t33 increases steadily between the boundary and the location x = 2

and decreases thereafter up to the location x = 4 and oscillatory around zero beyond this
location. The normal stress is negative at x = 0 where its magnitude is maximum.

Fig.2. shows the variations of change in volume fraction field ϕ for UDS with distance
x. Initially the magnitude of ϕ for (CT-I,LS-I) is found to be greater than that for(CT-D,LS-
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D), respectively.

Fig.3. shows the variations of temperature distribution T for UDS with distance x.
It is noticed that the variations of T in the context of (LS-D,LS-I)attain more values as
compared to (CT-D,CT-I)just in the vicinity of the load. But the behavior of variations
of T for (CT-D,CT-I,LS-D,LS-I) is oscillatory in the whole domain. Also it is observed
that, near the point of application of source the values of T for (CT-D,,LS-D) are more in
comparison to the (CT-I,LS-I), respectively.

Fig.4. shows the variations of normal stress t33 for LDS with distance x. The val-
ues of t33 for (LS-D,CT-D) is large in comparison to the values of t33 for (LS-I,CT-
I),respectively.Initially the values of t33 start with sharp increase in the range 0 ≤ x ≤ 2.2

and then follows an oscillatory pattern with reference to x.

Fig.5. depicts the variations of change in volume fraction field ϕ for LDS with distance
x. For (CT-I,LS-I), the values of ϕ are greater than those for (CT-D,LS-D), at the initial
value i.e. x = 0. The values of ϕ for (LS-D,LS-I) start with sharp increase in the range
0 ≤ x ≤ 3.2 whereas for (CT-D,CT-I) increase in the range 0 ≤ x ≤ 5.6 and then
oscillatory as x increase further.

Fig.6.depicts the variations of temperature distribution T for LDS with distance x. The
values of T for(CT-I,LS-I) are less than those for (CT-D,LS-D) in the range 0 ≤ x ≤ 2.2.
The behavior of variations of T with reference to x is same i.e. oscillatory for (CT-D,CT-
I,LS-D,LS-I)with difference in their magnitudes.

8.2 Thermal distributed source

Fig.7. shows the variations of normal stress t33 for UDS with distance x At the bound-
ing surface x = 0, t33 attain its maximum value≈ 0.0100,≈ 0.0073 for (LS-I,LS-D),
respectively. The normal stress curves are not continuous suffering jumps at different lo-
cations. Fig.8. shows the variations of change in volume fraction field ϕ for UDS with
distance x. It is interesting to note that the peak value attain by ϕ is much higher for CT-D
as compared to(CT-I,LS-D,LS-I), but the value gets reduced when x is increased.

Fig 9. shows the variations of temperatre distribution T for UDS with distance x. The
trend of variations of T for (CT-D,CT-I,LS-D, LS-I) is same whereas their corresponding
values are different in magnitudes. It decreases rapidly in the domain 0 ≤ x ≤ 2.5 and
ultimately it vanishes, as x increases further.

Fig.10. depicts the variations of normal stress t33 for LDS with distance x. The t33 for
(LS-D,LS-I) has a sharp fall in values for 0 ≤ x ≤ 2 and then the values start oscillating
and approach to constant value. Also the values of t33 for (CT-D,CT-I)increase slowly in
the range 0 ≤ x ≤ 1.4,decrease sharply in the range 1.4 ≤ x ≤ 4 and as x increases
further its behavior is oscillatory.

Fig.11. shows the variations of change in volume fraction field ϕ for LDS with distance
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x. The trend of variations of ϕ for(CT-D,CT-I)is same i.e. oscillatory in the whole range of
x whereas their corresponding values are different in magnitudes. The value of ϕ for LS-D
decreases in the range 0 ≤ x ≤ 5 and oscillatory in the remaining range of x. But the
value of ϕ for LS-I decreases in the whole range of x.

Fig.12. depicts the variations of temperatre distribution T for LDS with distance x. The
behavior of variations of T for (CT-D,CT-I,LS-D,LS-I) is similar but the corresponding
values are different. The values of T decrease sharply in the range 0 ≤ x ≤ 2.6, gradually
decrease in the range 2.6 ≤ x ≤ 8.5 and then increase as x increases further.

9 Conclusion

The comparison of the Lord and Shulman(L-S) theory and coupled theory of thermoe-
lasticity with and without dependence of modulus of elasticity is carried out. It is noticed
that the results obtained by using either the coupled or the Lord and Shulman theories are
different,near the point of application of source and quite similar far from the source. The
behavior of normal stress, change in volume fraction field and temperature distribution for
uniformly distributed source(instantaneous) are similar to those of the linearly distributed
source(instantaneous ), respectively with difference in their magnitudes, respectively. It is
observed that the magnitude of normal stress, change in volume fraction field and temper-
ature distribution follow an oscillatory pattern as x diverges from the point of application
of source.
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