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Abstract: We study the problem of small oscillations of inviscid inqumessible fluid with surface tension in partially filled tankwo
cases are discussed (regular and singular) and the lingléoghwater theory is used. For each case, we give the appedions of the
asymptotic solution of the spectral problem.
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1 Introduction In the singular case, where this minimum is zero, the
mathematical solution is more difficult.
o ___ Werestrict ourselves to the case of the parabolic container
The problem of the small oscillations of a heavy inviscid \ye determine the first approximation of the eigenvalues by
liquid in a container has been the subject of numerousneans of the theory of Legendre operat@isghow that it
works [5,4]. This is a well studied field in ocean and s possible to simplify the solution calling for the theotfy o
architecture engineering, applied mathematics andjegenerate elliptic operators of Baouendi and Goulaouic
physics, among other disciplines. [1,7] and calculate finally the second approximation of the
In the special case, when the depth of liquid is eigenvalues.
considerably smaller than the diameter of its free surface,
it is possible to use approximate methods and introduce a
small parameter to determine the successive -
approximations of the asymptotic solution of the spectral2 Position of the problem
problem B,9,4].
In this aim, we propose here a mathematical analysi2.1 Study of the equilibrium of the system
of linear standing oscillations of inviscid incompressibl
liquid in a container, considering effects of surface tensi | the equilibrium position, the inviscid incompressible
gnd assuming shallqw water dynarmcs. Such theory Cafeavy liquid occupies a domai@’ of the plane0X,x,
e applied to the oscillations of fuel in tanks when the fuel (0%, directed upwards) bounded by a rigid waland the
occupies a small volume. free liner .
Restricting ourselves for simplicity to the planar The pressure in the equilibrium position is
problem, we determine the approximations of orders zero,
one and two for the velocity potential and the eigenvalues, Pag= —pgx,+Co, (Co = constant (1)
distinguishing the regular case and the singular case.
The regular case, where the minimum of the depth ofwherep is the density of the liquid, and is the constant
liquid is strictly positive, leads to classical problems of acceleration of the gravity.
functional analysis. If P. the external pressure considered as constant, the
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From the equations3f and @), we deduce for®’ the

equations
def 02@/ 02(1,/
a0 = oxZ " ax? (©)
1 2
o’
o ls=0 )
Where% is the normal derivative 08.
The Euler’s equation?) can be writen
— 0 —
pgradaﬁ—t = —gradp’,
Fig. 1: Model of the system
so that we have
o’
' p= P +C(t) (8)
Laplace law gives
. whereC(t) is an arbitrary function of the time.
Peq— Pe= R onfl, The Laplace law on the moving free liiecan be written
, T
whereT is the surface tension considered as constant and P—PFe= R onft,

Ry the radius of curvature df reckoned as negative if the
center of curvature lies on the same sidé€ as the liquid.  whereR; is the radius of curvature @, or
Then we have T
—pg>(2+Co—Pe:—% onl,

If the equation of is X, = {(x},t) , its curvature in linear
In the following, we restrict ourselves to the caB¢  theory is¢” (X,,t) (5// _ ﬁfz) and consequently
infinite, Co = Peq: then,I” lies on the linex, = 0 [Fig.1]. o

pir = pg¢ — 1" 9)

In accordance with the capillarity laws, we must express
. _—— .. that the wetting angle betweépandSis constant.
2.2 Equations of small oscillations of the liquid |, the following, for simplicity, we restrict ourselves toet
case of a symetrical container with respeadtg. I" is the
We study the small oscillations of the liquid about its segmeniAB: x, = 0,—5 < x; < § and we denote by
equilibrium position, in the framework of the linear the angle betweeS8andOx, in A andB [Fig.1].
theory. A classical formula ([6], [5], [4]) or a simple calculation
If V andV are the velocity and acceleration of a particle gives
of the liquid, P’ the pressurep’ = P’ — P the dynamic o 1 o
ressure, we have Mty = — hel
P ¢ (iz’t) jERsinez(iz’t) (10)
— _grad® — 7 — _gradd (Euler's equation whereR is the radius of curvature &in A andB.
pV g P gracp’ ( a (2)) The condition expressing that the volume of liquid is

constant is _
divV =0 (incompressibility) (3) /r ¢dr =0
or .,
V. Ts=0 (impermeability of S) (4) "; ‘;_Z %0 dx, =0 (11)
-2

where s is the normal unit vector t& directed to the ) . . o0 .. .
exterior ofQ. Finally, settingC(t) in —p% and deriving 9) with
Under the condition of the application of Lagrange’s f€Specttd, we can write
theorem, we introduce the velocity potenti@l(x;, x5, t): . e o0 Td_z o0/
Pz ~PI% ~ Toxz \ ax,

r 1z
V = grac © ) onr a2
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2.3 Introduction of adimensional variables

In order to introduce in the sequel a small parameter, we

define adimensional variablgsby setting

X = 0X

Writing
(D (Xla X27 ) -

we seek solutions of the precedent equations in the form

d) (X17X27t) = iwt(D (X17X2) )

We obtain easily

(i=1,2)

(X/le/27 ) ’

wreal

02¢+02a> 0
d 0x2
o0
onls =0
0P
—dr =
axzd 0

0)>:

good T 02 (acb

g% pgod ax3 \ dxe

(13)

(14)

(15)

g 0@( 0) (16)

RsinG dx,

3 Application of the linear shallow water
theory to the regular case

):wch for x, =0 (17)

X

So.=

Fig. 3: The transformed figure in the domaiy, (regular case)

We suppose that, in the plafeqxy, the rigid boundans
consists of a vertical side waly and a botton$; defined
by an equation of the forrx, = —H(x;), whereH is
strictly positive in[—3,3]and of the order of/€, € > 0
being a small parameter [Fig.2].

Setting

X =2/ ; h(x1)Ve

we obtain the transformed figure in the plamg z) [Fig.3]

H(x) =

and we consider the transformed problem in the domain

QZ.
We set
D(x1,%2) = P(x1,2/€) = D(x1,2)
The equation13) becomes
azqa 2P
dxl + = 07 =0in Q, (18)

The equation14) is divided |n
replace by [7]

_0 onSy; , that we

2P 1
0_x1_0 for z=0, Xl_ii (29)
and
oD,
an =0 ons ;

that we can write,
X2 +h(x1)v/€ = 0:

since the equation & Iis

0b _ 0%y, B
a7 = 0 ” —h(x1) for z=—h(xp) (20)
Fig. 2: Model of the system in the regular case
The equation15) becomes
The regular case is the case where the minimum of the GI0)
depth of liquid is strictly positive. /r 579 =0 (21)
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SinceRis infinite and® = 7 , the equation16) can be

written
d (0P 1
_0X2 <_02 |zo> =0 for x; = :IZE (22)

Finally, the equationX7) gives
b T 02 (9P R
— =] =20 f = 2
0z pgo?ox2 ( dz) or z=0 (23)
where we have set

ow?

G (24)

We seek a solution of the problerd),..., 24) in the form
of an asymptotic expansions of powerssof

®(x1,2,€) = Po(x1,2) + £D1(x1,2) + £2Do(%q,2) + - -
(25)

A(E) = Ao+ A1+ E2A0+ - (26)

3.1 The approximation of order zero

Equaling in the equations the terms which do not depend

on g, we obtain

0?® .
ﬁzo in Q,:
b [ 1

274z —0:
(9X1( 270> 0'

dd, T 92 <aci>0

- =5 = )\0&70 for z=0;
0z  pgo?oxe \ 0z >

) (aqb

1
—_ — | = f ::I:— :
%, \ 9z |Z_O> 0 for x 2’

0P,
5 (X1 —h(x)) =0

d by
/I_Wdl' —o.

We find

@y =V(x1); V <j::—2L> =0; AV(x1)=0  (27)

Ao # 0 is impossible, then its gives the trivial solution.

Indeed, it is easy to verify that, &, = 0, we obtain for
®; the same problem a® with Ag # 0, so that®, = 0;
continuing,®, =0 vn > 0, and, thereforep = 0.

Then, we havéy = 0 andv(x;) is to determined later on.

3.2 The first approximation
i) We have

92®, _
072 = _\//(Xl) ’

ady [ 1\ .
a—xl(:I:E,O)—O,
00y 1 9% (0dy
0z pgo?oxz \ 0z

) = A1v(Xq) for z=0;
d [(0d, 1
0—)(1 (W |zo) =0 for X1—:|:§,
0é

z

]
aby
/rﬁdr_o.

We obtain successevely

=—-h'(x)V(x) for z=—h(x1);

P = —%V’/(Xl)zz + 0 (X1)z+wa(x) ;

wherea (x1) andw; (x1) are functions to determine,

Wy <i:—2L> =0;

a(x1) — ——5 0" (x1) = Av(x)
a’(i%>:0;

d

o (h(x1)V(x1)) + a(x1) =0;

1/2
/ a(xq)dxy =0.
—-1/2

Let us notice that, by integrating the third equation, we

obtain ff/ 2

1/2V(X1) dx; =0.

ii) Instead of consider straight the problem dk; ), we
are going to solve the problem far(x;), A1 andv(xy)
being supposed known.

We have
alx) — pgTGZ o (x1) = Aav(xe) (28)
1/2
/ a(x)dxg = 0 (29)
~1/2
o (i%) ~0 (30)
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Multiplying (28) by E(xl) verifing (29), integrating on
[—3.,3], we obtain the variational formulation of the
problem: To finda (-) € H (-3, 3), with

~ 11 11 3
1 1 .
H <_§ 5) {GEH <_§’§> /71

a(xy)dxg = 0},

such that
a(or,ﬁ)d:eff_lﬁzcwrdxhL L fl/liza a’dxg A
=(Mv@)  VaeH!
where(-,-);» is the scalar product of the space
/(11 11\ [3
2(_2 1)\ _ 2f 4+ 4 _
L < 2,2> {UEL ( > 2) / (Xl)dX]_ }

Obviousely,a(a,a) is coercive, continuous, hermitian,
sesquilinear form it x H! and the embedding ¢1 in
L2 s classically continuous, dense and compact.

Let us callQg the unnbounded operator bf associated
to a(-,-) and the pair(ﬁl,fz); the equation 1) is
equivalent to the equation

a=MQytv (32)

iif) Then, we can calcutg(x;) and A1 by solving the
eigenvalues problem:

—— (hV) = \Qytv (33)
d X1
1/2
/ v(x1) dxs = 0 (34)
-1/2
1
Y4 <j:—> =0 (35)
2
Its variational formulation is
12 .
/ PLYZIES QM9 wWeH!  (36)
-1/2

Since, in the regular case, nfifx;) > 0, the left hand side

of (36) can be considered as a scalar producHi by
virtue of the P~oincar’e inequality. N
Then, callingMo the unbounded operator bf associated

to the formf2 hv¥ dx; and the pan(Hl LZ) we see that
the equat|on$6) is equivalent to

Mov = A1Qy v (37)
Settlng Ml/2 = v* and introducing the operator
B = 1/ZQolM Y2 pounded in L2, self-adjoint,

positive definite and compact, we obtain the equivalent
equation
BV = A v (38)
For the eigenvalue,j, inverses of the eigenvalues Bf
we have

0<A1< A<+ <Ap<-++; Aip— o when n—

The eigenfunction; of B form an orthogonal basis &f.
it is easy to see that the eigenfunctignof our problem

verify

0 if m#n
—1 I
(Qo Vnan)Lz— /\];11 if m=n

3.3 The second order approximation

i) We have

‘7;:22 _; 'V22+d (WV)z—w, ;

(Zflz—o for z=0 xl_i%

%_ﬁj_); (%) =A@+ M@ for z=0;
din (0;;2 |z=0 ):0 for xlzi%;

%:—h/(xl)% for z=—h(x);

/&df 0.

These equations give successively

Gy = V7t —d—i(h\/)z?’ W2 1Bz wa()
V\/z( 2) 0;

Bxw) — 5238 (0) = Aav(x) +Awa ()

% (%): ,

BOw = 5 |5 3w—§h2d2<hw ;

12

B(Xl) dX1 =0
-1/2
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Let us notice that, by integrating the third equation, we

obtain f_lﬁz Wi (x1)dxy =0.

ii) Instead of consider straight the problem¥ar(x; ) , we
are going to solve the problem f@(x1), A2 andwy (1)
being supposed known.

We have
Bixw) — 5o 0) = Av(a) + Awa(x)  (39)
1/2
B(x1)dxg =0 (40)
-1/2
(L1
B <j:§> -0 (41)

This problem is analogous to the problem fofx;) ;
therfore, we have

B(x1) = A2Qy v+ A1Qg twy

i) Now, we can calculates (x;) and A, by solving the
eigenvalues problem

d
—d—xl(hwl) —MQytwr = (V) +A2Qp v (42)
1/2
/ Wl(Xl) dx; =0 (43)
-1/2
1
W, (i§> 0 (44)
with g 2
_ = } 3 //_1- 2
()= g [6h\/ h dX%(h\/)]

Anyway, it is a matter of a countable infinity to problems,
obtained by replacing; by A1 andv by v (k=1,2,--).

If the right-hand side of the equatiod2) was equal to
zero, we would have fow; the same problems as for
consequently, for eack, the homogeneous problem has
solutions different from the trivial solution. Classigall
our problem is pssible only if the right-hand side dp)

is orthogonal in_2 to the eigenlements correspoding to
A1k

For instance, let us suppose that thg, are simple
eigenvalues; we have the only condition

(f(Vid) +A2Qp Vi, Vi) ;2 = O (without summation ink)
and the second approximation of the eigenvalues is
Ak = —Aw (F (W), Vi) 2 (45)

The problem forw; can be written, with the precedent
notations

Mows = A1kQq *wa + f (Vic) + AkQg Wk

Settingl\ﬁé/zwl = W, we obtain the equation
Wi = AuBW; + Mo ™21 (i) + AaBY
Let us seekv; in the form

V\rjk_ ~ Z Cn\fﬁ 9
n
~ denoting the convergenceli? We have
S Cavi ~ Ak Y CaBV + Mo /2 (W) + AaBY
n n

Replacing  Bv; by )\l‘nlv;*1 and setting
Mo /%f (M) ~ SndnVi, where thed, are known, we

obtain the relations

{cn(l—)\lk/\l‘nl)—dnzo for n£k ;

—d—AgAy =0
The last equation gived¥); the others give the, for n #
k, cx remaining indeterminate.
We find finally

W1 ~ CxVk + ;(dn(l— )\1k)\fnl)Vn
n:

for n=k

Consequently, we must calculate the third approximation
in order to determine, and thenw;.

4 Application of the linear shallow water
theory to the singular case

Now, we are going to consider the case where the
minimum of the depth of liquid is equal to zero,

restricting ourselves to the problem for a parabolic
container.

4.1 Position of the problem

In the equilibrium position, the domai@’ occupied by the
liquid [Fig.4] is bounded by the parabolic wal

X/2
and the free line
X,=0; —d<x;<d

X is an adimensional coefficient considered as smab. If
is the angle betwee8 andOx;, we have X = tan@, so

(@© 2016 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett5, No. 3, 309-321 (2016)www.naturalspublishing.com/Journals.asp NS = 315

K
Ny

L,

i X
Fig. 4: Model of the system in the singular case Fig. 5: The transformed figure in the doma@y, (singular case)
that6 is small and of the order of.
The equations), --- , (9), (11 and (2) of the regular - -
case unchanged. The calculation of the radius of curvature 9% _ _ngld_da for z=x4—-1 (47)
. L : 1
of I, gives easilyRsin@ = d at the first order, so that the 0z ox1
equation 10) becomes
/ -1 1 0&)
' (£d,t) = £d 1 (£d,1) (10) 5 lodx, =0 (48)
4.2 Introduction of adimensional variables 9 /9d b
— (— (il,O)) =+—(4+1,0) (49)
We set 0x1 \ 0z 0z

The equationsi(3), (14), (15) for ®(x1,x) are unchanged oo 1 5° <‘9‘D) _Ad  forz=0 (50)

and the equationd.6) and (L7) become 0z pgd? 0x§ 0z
with
d [0d oo
— [ == (+1,0) ) = +=— (+1,0 16 2
X1 (axz ( )> g 10 (16) A= d%\/z (51)
goo T 92 /90 We remark that the impermeability condition of the
dox;  podon (0_xz> =w?®  forx,=0 (17) vertical wall § of the regular case disapears
4.3. Application of the linear shallow water theory We seek a solution of the problem in the form of the
We introduce a small parametersetting asymptotic expantion of powers ef (25), ( 26) and we
use the notations of the regular case.
X =€
SettingX, = z\/€, we obtain the equation &:
z=x2-1 4.3 The approximation of order zero
and, like in the regular case, we solve the problem in the
transformed domai;, [Fig.5]. Setting We obtain easily

D (x1, %) = @(x1,2v€) = P1(x1,2) do=0.  Bo=v(x0),
We obtain the equations _ N _ _
but without condition fowv(xz), that is to determined later
P %P . on.
8@ + ﬁ =0 in Qz (46)

(@© 2016 NSP
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i) The first approximation

We have
00252)1 =—V'(x) in Qg
%:le\/(xl) for z=x2—1;
/_11 0d<fz>1 lz—0 dx; =0;

06, 1 2 (24
0z pgd?9x? \ 09z
ERTEY
ax, \ az 70

> =A1v(X1) for z=0;

D
):i dzl|2=0 for x==+1;

We obtain successively

zZ
O = _E\/l(xl) +2z0 (X)) + Wi (Xg) ;
wherea (x1) andw (x;) are functions to determine,
d
— [V ()] = —a(x);

dX1
1
/ a () dxg = 0
-1
T " _ )\
G(Xl) — wa (Xl) = 1V(X1)
a'(£1) =+a (£1)
ii) Instead of consider straight the problem fdk;), we

are going to solve the problem far(x;), A1 and v(x;)
being supposed known.

We have
alx) — ﬁ o (x1) = Mv(xe) (52)
1
[ ()b =0 (53)
o (+£1) = +a (+1) (54)

The imbeddingH*(-1,1) c L?(-1,1) is classically
continuous, dense and compact,.

The sesquilinear formag(-,-) is hermitian and
continuous, we are going to prove that it is coercive in
H x H! by using an auxiliary problem. Let us show that

o JhaPa)da
inf ————>—=1
acH10%(1) +a?(-1)

At first, we seek the inf in

C?2[-1,1] = {a eC?[-1,1]; /_ta(xl)dxl - o}

In amounts to the same thing to seek the inf of
I, a?(x1) dx; in C2[—1,1] under the conditions

a?(1) + a¥(~1) = 1; /l a(x)dxg = 0
y 1 1 .
-1

Using the methods of the classical calculus of variations,
we write,A and 2u being the multipliers associated to both
conditions

5 ( Y a(x) dxl) — A8 [a%(1)+a?(~1)]
—2p [Y sadx =0
i.e
— Y (a"+u)dadx,+[a’ (1) —Aa (1)) da (1)
—[a’(-1)+Aa(-1)]da(-1)=0
Therfore, we have
G//—l— U= 0:
a’(1)-Aa(1)=0;
a'(-1)+Aa(-1)=0,
with L
Lla(xl)dxlzo

Itis a Steklov's problem that is easy to solve; we fing- 1
andA =3, so thatthe infis 1. Then, we have

/jl a?(x)dx; > a?(1)+ a?(—1);  Va eC?[-1,1]

Now we use the following theoren#l] p 127): Let
a € HY(—1,1). There exists a sequenag € D(R) such
that the restrictiordt, of ay to the interval—1, 1] tends to
a in HY(=1,1) , &, € C?[-1,1], so thatC?[-1,1] is

Like in the regular case, we obtain the variational equationdense irH* (—1,1) .

of this problem:

(D& @)+a(-1)a(-1) (55)

Then,C?[—1,1] is dense irH! (—1,1) and the inequality
is valid fora € H(—1,1).

We denote that, if o is
(a =ai+iaz, ai, ap realg, we have easily:

cmplex

L2 2 2. 1
l\a\ (x1)dxg > |a(1)|“+|a(-1)]"; VaeH
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Now, we can prove that[ag(a,a)]¥? defines on

H(—1,1) a norm which is equivalent to the classical

norm||all, of H(—-1,1).
We set

b(a,&):[ta?dxl— [a (1)@ (1) +a (~1)a (—1)]

By virtue of the precedent result, we have
b(a,a) >0

Consequently, we have

1
2 T
a,a) = alcdxy+ —=b(a,a) >0
ao ( ) /_1| | 1 pgd2 ( )

Let us prove that there exists a constant suchahad

——~ >c¢; Va e HY(-1,1)
lally

If ¢ doesn't exist, there is a sequenfam,} € H(—1,1)
such that
ao (G, 0n)

—0
2
[|amll1

N — 400

By homogeneity, we can suppo#ernﬂf =1, and then
ap (an, an) — 0. B
From the sequencgan} bounded inH!(—1,1), we can
extract a subsequence, still denofexd,} , that is weakly
convergent inﬁl(—l, 1), thus strongly convergent in
L?(-1,1) to alimita* € H'(—1,1) c L?(-1,1).
Fromag (an, an) — 0, we deduce

T

2
an— 0,
llan mHL2+p9d2

b(an— dm,0n —am) — 0;

whenn, m— +co |

so that
b(an— am,on—am) — 0

or

o — apllF2 .
— [(an(1) — am(2))2+ (an(~1) — am(—1))7]

Since{an} is weakly convergent iiti®, the sequences of
traces{an(1)} and{an(—1)} are strongly convergent in
C, so that

lan — aml| 2 =0

Therefore, from
2 2 2
lan — aml|] = ||ar/1 - ar/nHLZ + [|an — om| 2,

we deduce
|[Qn —amll; — 0

and the sequencgay} is strongly convergent tar* in
HL. Then, from||an|/; = 1, we deducda* ||, = 1.
On the other hand, fronag(an,an) — 0 we deduce

||an|\fz — 0 and consequently* = 0, that contradicts the
precedent result.

Finally, c exists and the formeg(a,d) is coercive in
H1xHL.

Let us return to the variational equatidsgy.

Contrary toar and@, v does not verify/*; vdx; = 0. But

w=v—1 % vdx verify

1 1 1 __
/ wdx; = 0; w =V and/ wa dx, = / Va dxy.
-1 -1 1

Therefore, the variational formulation of the problem for
a(xy) is:
Tofinda(-) € H(—1,1) such that

ao(a,d) = (Aw,a), vaeH" (56)

If we call Qy the unbounded operator df?(—1,1)
associated t@g (.,.) and the pair(ﬁl,fz), the equation
(56) is equivalent to

a =MQytw (57)

iif) Then, we can calculate(x;) and A1 by solving the
eigenvalues problertP) :

d [(1-x3)W] = A1Qy'w

T (58)

1
/ W(xt) dxy = O (59)
-1

and there are not boundary conditions.

If A1 is an eigenvalue and and/ a corresponding
eigenelement, the eigenelemeris given by the equation

(52:
T

~ pgd?
(We remark thathlw belongin toD(Qp), belongs to
HY(-1,1)).

In order to solve the probleffi), we use results obtained

in [3] on the Legendre’s operators.
We introduce the spaces

V= {ueLZ(—l,l); \/fxgu/g_z(_l,l)};
V= {UGV:/_llu(xl)dxlzo}

equipped with the scalar product

(Q*w)”

v=Qy'w

ao(u,U) = /j{(l—xﬁ)u/ﬁJr uﬁ} dxy
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\Y andV are Hilbert spaces and the embeddihg L2 and
V c L? are continuous, dense and comp&§it [
Let consider the problertP).

SinceAQy'we L2, ,/1—-x2 w € H! and, consequently

[3] {/1-x2wW =0 forx; = +1.

We have
1 d

[

¥Vriting W =W — 1 /1, Wdx; with W arbitrary inV, we
ave

[(1—x))W] - Wdx; = (MQy W,W), YW €V

d

1
[\ e

But 2(—1,1) is dense itV [3]. TakingW € 2(—1,1) and
integrating by parts, we have

[(1—x)W] Wax, = (Anglw,Vv) L W ev.

——1 —
{—(1—x§)V\/W]71+f_11(1—x§)V\/ W dxq
=M (QWW) ;. W eZ(-11)

The first term of the left-hand side has sense and itis equal

to zero, so that we have

YW e 2(—1,1)
(60)

1
25
1 L

/ (1—2)W W dxy = A1 (Q5 W)
therefore by density for eadit € V and finally

1 —
2\ N _ “1.\) - U\ e\
Ll(l W W dxg = Ay (QwW) i YW eV
(61)
Reciprocally, from 61), we deduce@Q) and consequently

d

dX1

—— [1-X)w] =1Qy'w in Z'(-1,1)
Therefore, the variational formulation of the probl¢R)
is : to findw € V verifying (61).

The sesquilinear form of the left-hand side &1 is

hermitian and continuous oX x V. We are going to
prove that is coercive, i.e there exists a constgnt 0
such that

1 ~
/1(1_x§)w2dx12 Collw|2; Ww eV

If co > 0 does not exist, there exists a sequefwg} € V
such that

1
[[Wnlly =1, /71(1—x§)\/\/nzdx1—>0 whenn — oo,

From the sequencéw,}, we can extract a subsequence,
still denoted{w,} that is strongly convergent ib? to a

limit We V c L2:
W — W[ — 0
T

From

(I — Wm||\27 = /11 [(1 —Xx3) (W — \,\/m)2+ (Wn — Wm)Z} dxq

and the precedent result, we deduce

[Wn —Wmlly — 0 whenn, m — co.

The sequence{w,} is convergent inV to W and
consequently

Wiy = 1.
On the other hand, from/*;(1 —x3)#2dx; = 0, we

deduceW = 0, thenW = cte, and, sincel € V, W = 0,
that contradicts the precedent result.
There, we can finish like in the regular case.

let us callLo , the unbounded opertor &f associated to
the form [, (1 —x3)w - W dx; and the paiv(\7,[2) .

The variational equation 6Q) is equivalent to the
operatorial equation

Low = A1Qq tw (62)

Setting E(l)/zw = w* and and introducing the operator

C = L, ?Qy 'L, "% bounded in 2, self-adjoint, positive
definite and compact, we obtain the equivalent equation

Cw' = A w* (63)

The eigenvalued; of the problem are the inverse of the
eigenvalues of and we have

0<A11 <A<+ <A<+ 5 Aip— 0 when n— oo
The eigenfunctionv, of the problem verify

0 if m#n

Ayl if m=n

(QEleWm)Ez = {

Thev, are given by

_r
pgd?

Remark: It was possible to avoid a few precedent
calculations by using the general theory of the degenerate
elliptic operators of Baouendi and Goulaouid]([[7]);

this theory must be used in the case of an arbitrary
containeit]

(Qp whn)”

Vn = Qalwn -

In our case, we consider the operator (of Legendre)

d d
bo=-54 [(1 d—]

2
—X7)
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without boundary condition.
It can be proved that

1) Lo is topological isomorphism of
D(Lo) = {we H1(-1,1); (1—x8)weH2(-1, 1)}

ontol?(—1,1)

2) Lo, considered as an unbounded operatdridf-1, 1),
has an inversg, * bounded fronl? (—1,1) in L?(—1,1),
self-adjoint, definite positive and compact.

Then the problen(P) is :

To findw € D(Lo) andA; € R such that

EoW = )\1Q61W
Itis the equation&2)

4.4 The second order approximation

i) we have
0?d, 2 .
0222 = iv'v (x1) —za”(x1) —W'(x1) in Q;
% z=x¢—1
_ _M\/// 2 ey W, )
=2x (x1) + (x3 — D)o’ (x1) + W (xa) | ;
19
L 9z 2 |ro Oy =
(9(’152 T 02 (9@72 .
5, 170~ paP 02 ( 57 1= o) = A2V(X1) + Aawi (X1);

L oD,

These equations give

==+1

. 7z rad z2
Py = ﬂVN (1) = 5 " (x) = 5 W1 (xa) +2B(xa) + W (xa),
wheref(x;) andwx(x;) are to determine,
d 2 1 3 " 2 1 2
B(x1) = dl{ (X16 )\/+(X12 )a +0G - Dwi | ;

/1 B(x1)dx = 0
-1
B(x1) — ﬁﬁ”(xl) = AoV(x1) + AWo(Xq) ;

B/(£1) = £B (1) .

i) Instead of consider straight the problem fey(x;) ,
we are going to solve the problem for
B(x1), v(x1), wi(X1), A1, A2 being supposed known.

We have

B(x1) — ﬁﬁ”(xl) = Av(xa) + Awa(x))  (64)
[ Boyan o 9)
B! (+£1) = +B(+1) (66)

This problem is analogous to the problem fofx;) and
we have with the precedent notations

ao (B,B) = AZ/_l:I_Vdel‘F/\l/_llWlEXm VB e HL.

Sincev (respw;) does not verify[*, v(xy) dx; =
I wa(x1) dx; = 0), we introduce

0 (resp

11 11
W=V——/ V(x1)dxs ; W1=W1——/ Wi (X1) OXg.
2/ 2/-1

The variational formulation of the problem is:
To find B € H! such that

ao (BaB) = (A2W0+/\1W1’§)E2 VB c HL.

and we obtainQ)q being the unbounded operator wich we
have used:

B(x1) = A2Qp W+ A1Qy W4

iif) Now, we can calculatev;(x;) and A, by solving the
eigenvalues problem:

d

g [T D] —M1Qp W = f(w) + 2205w (67)

1

/ M =0 (68)
where
A d [1-x2)8 , (1-x%)%
flw =~ | S tw - B g

Anyway, it is a matter of a countable infinity of problems,
obtained by replacing; by A andw by wy (k=1,2---).
Like in the regular case, the problem is possible only if
the right-hand side of67) is orthogonal inL? to the
eigenelementsy corresponding to théyy.

Supposing still that thel;x are simple eigenvalues, we
obtain

Az = = (F(wie) , wie) ;2 = 0 (69)

The problem fol\; can be written

LoWi = AnQp WA + f (wie) -+ A2Qp ik
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