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Abstract: We study the problem of small oscillations of inviscid incompressible fluid with surface tension in partially filled tanks. Two
cases are discussed (regular and singular) and the linear shallow water theory is used. For each case, we give the approximations of the
asymptotic solution of the spectral problem.
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1 Introduction

The problem of the small oscillations of a heavy inviscid
liquid in a container has been the subject of numerous
works [5,4]. This is a well studied field in ocean and
architecture engineering, applied mathematics and
physics, among other disciplines.

In the special case, when the depth of liquid is
considerably smaller than the diameter of its free surface,
it is possible to use approximate methods and introduce a
small parameter to determine the successive
approximations of the asymptotic solution of the spectral
problem [8,9,4].

In this aim, we propose here a mathematical analysis
of linear standing oscillations of inviscid incompressible
liquid in a container, considering effects of surface tension
and assuming shallow water dynamics. Such theory can
be applied to the oscillations of fuel in tanks when the fuel
occupies a small volume.

Restricting ourselves for simplicity to the planar
problem, we determine the approximations of orders zero,
one and two for the velocity potential and the eigenvalues,
distinguishing the regular case and the singular case.

The regular case, where the minimum of the depth of
liquid is strictly positive, leads to classical problems of
functional analysis.

In the singular case, where this minimum is zero, the
mathematical solution is more difficult.
We restrict ourselves to the case of the parabolic container,
we determine the first approximation of the eigenvalues by
means of the theory of Legendre operators [3], show that it
is possible to simplify the solution calling for the theory of
degenerate elliptic operators of Baouendi and Goulaouic
[1,7] and calculate finally the second approximation of the
eigenvalues.

2 Position of the problem

2.1 Study of the equilibrium of the system

In the equilibrium position, the inviscid incompressible
heavy liquid occupies a domainΩ ′ of the planeOx′1x′2
(Ox′1 directed upwards) bounded by a rigid wallSand the
free lineΓ .
The pressure in the equilibrium position is

Peq=−ρgx′2+C0, (C0 = constant) (1)

whereρ is the density of the liquid, andg is the constant
acceleration of the gravity.
If Pe the external pressure considered as constant, the
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Fig. 1: Model of the system

Laplace law gives

Peq−Pe=− τ
R0

onΓ ,

whereτ is the surface tension considered as constant and
R0 the radius of curvature ofΓ reckoned as negative if the
center of curvature lies on the same side ofΓ as the liquid.
Then we have

−ρgx′2+C0−Pe =− τ
R0

onΓ ,

In the following, we restrict ourselves to the caseR0
infinite,C0 = Peq: then,Γ lies on the linex′2 = 0 [Fig.1].

2.2 Equations of small oscillations of the liquid

We study the small oscillations of the liquid about its
equilibrium position, in the framework of the linear
theory.
If
−→
V and−→γ are the velocity and acceleration of a particle

of the liquid, P′ the pressure,p′ = P′ −Peq the dynamic
pressure, we have

ρ−→γ =−−−→
gradP′−ρg

−→
x′2 =−−−→

gradp′ (Euler’s equation)
(2)

div
−→
V = 0 (incompressibility) (3)

−→
V ·−→n S= 0 (impermeability of S) (4)

where−→n S is the normal unit vector toS directed to the
exterior ofΩ .
Under the condition of the application of Lagrange’s
theorem, we introduce the velocity potentialΦ ′(x′1,x

′
2, t):

−→
V =

−−→
gradΦ ′ (5)

From the equations (3) and (4), we deduce forΦ ′ the
equations

∆Φ ′ def
=

∂ 2Φ ′

∂x′1
2 +

∂ 2Φ ′

∂x′2
2 = 0 (6)

∂Φ ′

∂n
|S = 0 (7)

where ∂
∂n is the normal derivative onS.

The Euler’s equation (2) can be writen

ρ
−−→
grad

∂Φ ′

∂ t
=−−−→

gradp′ ,

so that we have

p′ =−ρ
∂Φ ′

∂ t
+C(t) (8)

whereC(t) is an arbitrary function of the time.
The Laplace law on the moving free lineΓt can be written

P′−Pe =− τ
Rt

onΓt ,

whereRt is the radius of curvature ofΓt , or

Peq|Γt + p′|Γ −Pe=− τ
Rt

on Γt

If the equation ofΓt is x′2 = ζ (x′1, t) , its curvature in linear

theory isζ ′′(x′1, t)
(

ζ ′′ = ∂ 2ζ
∂x′21

)
and consequently

p′|Γ = ρgζ − τζ ′′ (9)

In accordance with the capillarity laws, we must express
that the wetting angle betweenΓt andS is constant.
In the following, for simplicity, we restrict ourselves to the
case of a symetrical container with respect toOx′2. Γ is the
segmentAB : x′2 = 0,−σ

2 ≤ x′1 ≤ σ
2 and we denote byθ

the angle betweenSandOx′1 in A andB [Fig.1].
A classical formula ([6], [5], [4]) or a simple calculation
gives

ζ ′
(
±σ

2
, t
)
=± 1

Rsinθ
ζ
(
±σ

2
, t
)

(10)

whereR is the radius of curvature ofS in A andB.
The condition expressing that the volume of liquid is
constant is ∫

Γ
ζ dΓ = 0

or ∫ σ
2

− σ
2

∂Φ ′

∂x′2

∣∣∣x′2=0 dx′1 = 0 (11)

Finally, settingC(t) in −ρ ∂Φ ′
∂ t and deriving (9) with

respect tot, we can write

−ρ
∂ 2Φ ′

∂ t2 = ρg
∂Φ ′

∂x′2
− τ

∂ 2

∂x′21

(
∂Φ ′

∂x′2

)
on Γ (12)

c© 2016 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.5, No. 3, 309-321 (2016) /www.naturalspublishing.com/Journals.asp 311

2.3 Introduction of adimensional variables

In order to introduce in the sequel a small parameter, we
define adimensional variablesxi by setting

x′i = σxi (i = 1,2)

Writing
Φ̃ (x1,x2, t) = Φ ′ (x′1,x′2, t

)
,

we seek solutions of the precedent equations in the form

Φ̃ (x1,x2, t) = eiωtΦ (x1,x2) , ω real.

We obtain easily

∂ 2Φ
∂x1

2 +
∂ 2Φ
∂x2

2 = 0 (13)

∂Φ
∂n

|S = 0 (14)

∫

Γ

∂Φ
∂x2

dΓ = 0 (15)

∂
∂x1

(
∂Φ
∂x2

(
±1

2
,0

))
=− σ

Rsinθ
∂Φ
∂x2

(
±1

2
,0

)
(16)

g
σ

∂Φ
∂x2

− τ
ρgσ3

∂ 2

∂x2
1

(
∂Φ
∂x2

)
= ω2Φ for x2 = 0 (17)

3 Application of the linear shallow water
theory to the regular case

Fig. 2: Model of the system in the regular case

The regular case is the case where the minimum of the
depth of liquid is strictly positive.

Fig. 3: The transformed figure in the domainΩz (regular case)

We suppose that, in the planeOx1x2, the rigid boundaryS
consists of a vertical side wallS0 and a bottomS1 defined
by an equation of the formx2 = −H(x1), whereH is
strictly positive in

[
− 1

2,
1
2

]
and of the order of

√
ε, ε > 0

being a small parameter [Fig.2].
Setting

x2 = z
√

ε ; H(x1) = h(x1)
√

ε

we obtain the transformed figure in the plane(x1,z) [Fig.3]
and we consider the transformed problem in the domain
Ωz.
We set

Φ(x1,x2) = Φ(x1,z
√

ε) = Φ̂(x1,z)

The equation (13) becomes

ε
∂ 2Φ̂
∂x1

2 +
∂ 2Φ̂
∂z2 = 0 in Ωz (18)

The equation (14) is divided in ∂Φ̂
∂x1

= 0 on S0,z , that we
replace by [7]

∂Φ̂
∂x1

= 0 for z= 0, x1 =±1
2

(19)

and
∂Φ̂1

∂n
= 0 onS1,z

that we can write, since the equation ofS1 is
x2+h(x1)

√
ε = 0:

∂Φ̂1

∂z
=−ε

∂Φ̂1

∂x1
h′(x1) for z=−h(x1) (20)

The equation (15) becomes

∫

Γ

∂Φ̂
∂z

dΓ = 0 (21)
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SinceR is infinite andθ = π
2 , the equation (16) can be

written

∂
∂x2

(
∂Φ̂
∂z

|z=0

)
= 0 for x1 =±1

2
(22)

Finally, the equation (17) gives

∂Φ̂
∂z

− τ
ρgσ2

∂ 2

∂x2
1

(
∂Φ̂
∂z

)
= λ Φ̂ for z= 0 (23)

where we have set

λ =
σω2

g

√
ε (24)

We seek a solution of the problem (18),..., (24) in the form
of an asymptotic expansions of powers ofε

Φ̂(x1,z,ε) = Φ̂0(x1,z)+ εΦ̂1(x1,z)+ ε2Φ̂2(x1,z)+ · · ·
(25)

λ (ε) = λ0+ ελ1+ ε2λ2+ · · · (26)

3.1 The approximation of order zero

Equaling in the equations the terms which do not depend
on ε, we obtain

∂ 2Φ̂
∂z2 = 0 in Ωz ;

∂Φ̂
∂x1

(
±1

2
,0

)
= 0 ;

∂Φ̂0

∂z
− τ

ρgσ2

∂ 2

∂x2
1

(
∂Φ̂0

∂z

)
= λ0Φ̂0 for z= 0 ;

∂
∂x1

(
∂Φ̂
∂z

|z=0

)
= 0 for x1 =±1

2
;

∂Φ̂0

∂z
(x1,−h(x1)) = 0 ;

∫

Γ

∂Φ̂0

∂z
dΓ = 0.

We find

Φ̂0 = v(x1); v′
(
±1

2

)
= 0; λ0v(x1) = 0 (27)

λ0 6= 0 is impossible, then its gives the trivial solution.
Indeed, it is easy to verify that, ifλ0 = 0, we obtain for
Φ̂1 the same problem aŝΦ0 with λ0 6= 0, so thatΦ̂1 = 0;
continuing,Φ̂n = 0 ∀n≥ 0, and, therefore,̂Φ = 0.
Then, we haveλ0 = 0 andv(x1) is to determined later on.

3.2 The first approximation

i) We have

∂ 2Φ̂1

∂z2 =−v′′(x1) ;

∂Φ̂1

∂x1

(
±1

2
,0

)
= 0 ;

∂Φ̂1

∂z
− τ

ρgσ2

∂ 2

∂x2
1

(
∂Φ̂1

∂z

)
= λ1v(x1) for z= 0 ;

∂
∂x1

(
∂Φ̂1

∂z
|z=0

)
= 0 for x1 =±1

2
;

∂Φ̂1

∂z
=−h′(x1)v

′(x1) for z=−h(x1) ;

∫

Γ

∂Φ̂1

∂z
dΓ = 0.

We obtain successevely

Φ̂1 =−1
2

v′′(x1)z
2+α(x1)z+w1(x1) ;

whereα(x1) andw1(x1) are functions to determine,

w′
1

(
±1

2

)
= 0 ;

α(x1)−
τ

ρgσ2α ′′(x1) = λ1v(x1) ;

α ′
(
±1

2

)
= 0 ;

d
dx1

(
h(x1)v

′(x1)
)
+α(x1) = 0 ;

∫ 1/2

−1/2
α(x1)dx1 = 0 .

Let us notice that, by integrating the third equation, we

obtain
∫ 1/2
−1/2v(x1)dx1 = 0 .

ii) Instead of consider straight the problem forv(x1), we
are going to solve the problem forα(x1), λ1 and v(x1)
being supposed known.
We have

α(x1)−
τ

ρgσ2 α ′′(x1) = λ1v(x1) (28)

∫ 1/2

−1/2
α(x1)dx1 = 0 (29)

α ′
(
±1

2

)
= 0 (30)
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Multiplying (28) by α̃(x1) verifing (29), integrating on[
− 1

2,
1
2

]
, we obtain the variational formulation of the

problem: To findα(·) ∈ H̃1
(
− 1

2,
1
2

)
, with

H̃1
(
−1

2
,
1
2

)
=

{
α ∈ H1

(
−1

2
,
1
2

)
;
∫ 1

2

−1
2

α(x1)dx1 = 0

}
,

such that




a(α, α̃)
def
=

∫ 1/2
−1/2 αα̃ dx1+

τ
ρgσ2

∫ 1/2
−1/2α ′α̃ ′dx1

= (λ1v, α̃)L̃2 ∀α̃ ∈ H̃1
(31)

where(·, ·)L̃2 is the scalar product of the space

L̃2
(
−1

2
,
1
2

)
=

{
u∈ L2

(
−1

2
,
1
2

)
;
∫ 1

2

−1
2

u(x1)dx1 = 0

}

Obviousely,a(α, α̃) is coercive, continuous, hermitian,
sesquilinear form iñH1× H̃1 and the embedding of̃H1 in
L̃2 is classically continuous, dense and compact.
Let us callQ0 the unnbounded operator ofL̃2 associated

to a(·, ·) and the pair
(

H̃1, L̃2
)

; the equation (31) is

equivalent to the equation

α = λ1Q−1
0 v (32)

iii) Then, we can calcutev(x1) and λ1 by solving the
eigenvalues problem:

− d
dx1

(
hv′

)
= λ1Q−1

0 v (33)

∫ 1/2

−1/2
v(x1)dx1 = 0 (34)

v′
(
±1

2

)
= 0 (35)

Its variational formulation is
∫ 1/2

−1/2
hv′v̂′dx1 = λ1

(
Q−1

0 v, v̂
)

L̃2 ∀v̂∈ H̃1 (36)

Since, in the regular case, minh(x1)> 0, the left hand side
of (36) can be considered as a scalar product inH̃1 by
virtue of the Poincaré inequality.
Then, callingM̃0 the unbounded operator ofL̃2 associated

to the form
∫ 1

2
−1
2

hv′v̂′dx1 and the pair
(

H̃1, L̃2
)

, we see that

the equation (36) is equivalent to

M̃0v= λ1Q−1
0 v (37)

Setting M̃1/2
0 v = v∗ and introducing the operator

B = M̃−1/2
0 Q−1

0 M̃−1/2
0 bounded in L̃2, self-adjoint,

positive definite and compact, we obtain the equivalent
equation

Bv∗ = λ−1
1 v∗ (38)

For the eigenvaluesλ1 j , inverses of the eigenvalues ofB,
we have

0< λ11≤ λ12≤ ·· · ≤ λ1n ≤ ·· · ; λ1n → ∞ when n→ ∞

The eigenfunctionv∗i of B form an orthogonal basis of̃L2.
it is easy to see that the eigenfunctionvi of our problem
verify

(
Q−1

0 vn,vm
)

L̃2 =





0 if m 6= n

λ−1
1n if m= n

3.3 The second order approximation

i) We have

∂ 2Φ̂2

∂z2 =
1
2

vIV z2+
d3

dx3
1

(hv′)z−w′
1 ;

∂Φ̂2

∂x1
= 0 ; for z= 0 , x1 =±1

2
;

∂Φ̂2

∂z
− τ

ρgσ2

∂ 2

∂x2
1

(
∂Φ̂2

∂z

)
= λ2Φ̂0+λ1Φ̂1 for z= 0 ;

∂
∂x1

(
∂Φ̂2

∂z
|z=0

)
= 0 for x1 =±1

2
;

∂Φ̂2

∂z
=−h′(x1)

∂Φ̂1

∂x1
for z=−h(x1) ;

∫

Γ

∂Φ̂2

∂z
dΓ = 0.

These equations give successively

Φ̂2 =
1
24

vIV z4+
1
6

d3

dx3
1

(hv′)z3− 1
2

w′′
1z2+β (x1)z+w2(x1) ;

w′
2

(
±1

2

)
= 0 ;

β (x1)−
τ

ρgσ2 β ′′(x1) = λ2v(x1)+λ1w1(x1)

β ′
(
±1

2

)
= 0 ;

β (x1) =
d

dx1

[
1
6

h3v′′− 1
2

h2 d2

dx2
1

(hv′)−h′w1

]
;

∫ 1/2

−1/2
β (x1)dx1 = 0.
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Let us notice that, by integrating the third equation, we

obtain
∫ 1/2
−1/2w1(x1)dx1 = 0 .

ii) Instead of consider straight the problem forw1(x1) , we
are going to solve the problem forβ (x1), λ2 andw1(x1)
being supposed known.
We have

β (x1)−
τ

ρgσ2 β ′′(x1) = λ2v(x1)+λ1w1(x1) (39)

∫ 1/2

−1/2
β (x1)dx1 = 0 (40)

β ′
(
±1

2

)
= 0 (41)

This problem is analogous to the problem forα(x1) ;
therfore, we have

β (x1) = λ2Q−1
0 v+λ1Q

−1
0 w1

iii) Now, we can calculatew1(x1) andλ2 by solving the
eigenvalues problem

− d
dx1

(hw′
1)−λ1Q

−1
0 w1 = f (v)+λ2Q−1

0 v (42)

∫ 1/2

−1/2
w1(x1)dx1 = 0 (43)

w′
1

(
±1

2

)
= 0 (44)

with

f (v) =
d

dx1

[
1
6

h3v′′′− 1
2

h2 d2

dx2
1

(hv′)

]

Anyway, it is a matter of a countable infinity to problems,
obtained by replacingλ1 by λ1k andv by vk (k= 1,2, · · · ).
If the right-hand side of the equation (42) was equal to
zero, we would have forw1 the same problems as forv.
consequently, for eachk, the homogeneous problem has
solutions different from the trivial solution. Classically,
our problem is pssible only if the right-hand side of (42)
is orthogonal iñL2 to the eigenlementsvk correspoding to
λ1k.
For instance, let us suppose that theλ1k are simple
eigenvalues; we have the only condition
(

f (vk)+λ2Q
−1
0 vk,vk

)
L̃2 = 0 (without summation ink)

and the second approximation of the eigenvalues is

λ2k =−λ1k ( f (vk),vk)L̃2 (45)

The problem forw1 can be written, with the precedent
notations

M̃0w1 = λ1kQ
−1
0 w1+ f (vk)+λ2kQ

−1
0 vk

SettingM̃1/2
0 w1 = w∗

1, we obtain the equation

w∗
1 = λ1kBw∗

1+ M̃−1/2
0 f (vk)+λ2kBv∗k

Let us seekw∗
1 in the form

w∗
1 ∼ ∑

n
cnv∗n ,

∼ denoting the convergence iñL2 We have

∑
n

cnv∗n ∼ λ1k∑
n

cnBv∗n+ M̃−1/2
0 f (vk)+λ2kBv∗k

Replacing Bv∗n by λ−1
1n v∗n and setting

M̃−1/2
0 f (vk) ∼ ∑ndnv∗n, where thedn are known, we

obtain the relations




cn(1−λ1kλ−1
1n )−dn = 0 for n 6= k ;

−dk−λ2kλ−1
1k = 0 for n= k

The last equation gives (45); the others give thecn for n 6=
k, ck remaining indeterminate.
We find finally

w1 ∼ ckvk+ ∑
n6=k

dn(1−λ1kλ−1
1n )vn

Consequently, we must calculate the third approximation
in order to determineck and thenw1.

4 Application of the linear shallow water
theory to the singular case

Now, we are going to consider the case where the
minimum of the depth of liquid is equal to zero,
restricting ourselves to the problem for a parabolic
container.

4.1 Position of the problem

In the equilibrium position, the domainΩ ′ occupied by the
liquid [Fig.4] is bounded by the parabolic wallS.

x′2 = X

(
x′21
d

−d

)
; x′2 ≤ 0

and the free line

x′2 = 0; −d ≤ x′1 ≤ d

X is an adimensional coefficient considered as small. Ifθ
is the angle betweenS andOx′1, we have 2X = tanθ , so

c© 2016 NSP
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Fig. 4: Model of the system in the singular case

thatθ is small and of the order ofX.
The equations (1), · · · , (9), (11) and (12) of the regular
case unchanged. The calculation of the radius of curvature
of Γt , gives easilyRsinθ = d at the first order, so that the
equation (10) becomes

ζ ′ (±d, t) =±d−1ζ (±d, t)
(
10′

)

4.2 Introduction of adimensional variables

We set
x′1 = dxi (i = 1,2)

The equations (13), (14), (15) for Φ(x1,x2) are unchanged
and the equations (16) and (17) become

∂
∂x1

(
∂Φ
∂x2

(±1,0)

)
=±∂Φ

∂x2
(±1,0)

(
16′

)

g
d

∂Φ
∂x2

− τ
ρgd3

∂ 2

∂x2
1

(
∂Φ
∂x2

)
= ω2Φ for x2 = 0

(
17′

)

4.3. Application of the linear shallow water theory
We introduce a small parameterε, setting

X =
√

ε

SettingX2 = z
√

ε , we obtain the equation ofSz:

z= x2
1−1

and, like in the regular case, we solve the problem in the
transformed domainΩz [Fig.5]. Setting

Φ(x1,x2) = Φ(x1,z
√

ε) = Φ̂1(x1,z)

We obtain the equations

ε
∂ 2Φ̂
∂x1

2 +
∂ 2Φ̂
∂z2 = 0 in Ωz (46)

Fig. 5: The transformed figure in the domainΩz (singular case)

∂Φ̂
∂z

=−2εx1
∂Φ̂
∂x1

for z= x2
1−1 (47)

∫ 1

−1

∂Φ̂
∂z

|z=0 dx1 = 0 (48)

∂
∂x1

(
∂Φ̂
∂z

(±1,0)

)
=±∂Φ̂

∂z
(±1,0) (49)

∂Φ̂
∂z

− τ
ρgd2

∂ 2

∂x2
1

(
∂Φ̂
∂z

)
= λ Φ̂ for z= 0 (50)

with

λ =
dω2

g

√
ε (51)

We remark that the impermeability condition of the
vertical wall S0 of the regular case disapears.

We seek a solution of the problem in the form of the
asymptotic expantion of powers ofε, (25), ( 26) and we
use the notations of the regular case.

4.3 The approximation of order zero

We obtain easily

λ0 = 0; Φ̂0 = v(x1),

but without condition forv(x1), that is to determined later
on.
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i) The first approximation
We have

∂ 2Φ̂1

∂z2 =−v′′(x1) in Ωz ;

∂Φ̂1

∂x1
= 2x1v′(x1) for z= x2

1−1 ;

∫ 1

−1

∂Φ̂1

∂z
|z=0 dx1 = 0 ;

∂Φ̂1

∂z
− τ

ρgd2

∂ 2

∂x2
1

(
∂Φ̂1

∂z

)
= λ1v(x1) for z= 0 ;

∂
∂x1

(
∂Φ̂1

∂z
|z=0

)
=±∂Φ̂1

∂z
|z=0 for x1 =±1 ;

We obtain successively

Φ̂1 =−z2

2
v′′(x1)+ zα(x1)+w1(x1) ;

whereα(x1) andw1(x1) are functions to determine,

d
dx1

[
(1− x2

1)v
′(x1)

]
=−α(x1) ;

∫ 1

−1
α(x1)dx1 = 0

α(x1)−
τ

ρgd2α ′′(x1) = λ1v(x1)

α ′ (±1) =±α (±1)

ii) Instead of consider straight the problem forv(x1), we
are going to solve the problem forα(x1), λ1 and v(x1)
being supposed known.
We have

α(x1)−
τ

ρgd2 α ′′(x1) = λ1v(x1) (52)

∫ 1

−1
α(x1)dx1 = 0 (53)

α ′ (±1) =±α (±1) (54)

Like in the regular case, we obtain the variational equation
of this problem:





a0(α, α̂)
def
=

∫ 1
−1 αα̂ dx1+

τ
ρgd2

∫ 1
−1 α ′α̂ ′dx1

− τ
ρgd2

[
α (1) α̂ (1)+α (−1)α̂ (−1)

]

= (λ1v, α̂)L̃2 ∀α̂ ∈ H̃1

(55)

The imbedding H̃1 (−1,1) ⊂ L̃2 (−1,1) is classically
continuous, dense and compact,.
The sesquilinear form a0 (·, ·) is hermitian and
continuous, we are going to prove that it is coercive in
H̃1× H̃1 by using an auxiliary problem. Let us show that

inf
α∈H̃1

∫ 1
−1 α ′2(x1)dx1

α2(1)+α2(−1)
= 1

At first, we seek the inf in

C̃2 [−1,1] =

{
α ∈C2 [−1,1] ;

∫ 1

−1
α(x1)dx1 = 0

}

In amounts to the same thing to seek the inf of∫ 1
−1 α ′2(x1)dx1 in C2 [−1,1] under the conditions

α2(1)+α2(−1) = 1;
∫ 1

−1
α(x1)dx1 = 0.

Using the methods of the classical calculus of variations,
we write,λ and 2µ being the multipliers associated to both
conditions





δ
(∫ 1

−1 α ′2(x1)dx1

)
−λ δ

[
α2(1)+α2(−1)

]

−2µ
∫ 1
−1 δα dx1 = 0

i.e
{
−∫ 1

−1(α ′′+ µ)δα dx1+[α ′ (1)−λ α (1)]δα (1)

− [α ′ (−1)+λ α (−1)]δα (−1) = 0

Therfore, we have

α ′′+ µ = 0 ;

α ′ (1)−λ α (1) = 0 ;

α ′ (−1)+λ α (−1) = 0 ,

with ∫ 1

−1
α(x1)dx1 = 0

It is a Steklov’s problem that is easy to solve; we findλ = 1
andλ = 3 , so that the inf is 1. Then, we have
∫ 1

−1
α ′2(x1)dx1 ≥ α2(1)+α2(−1); ∀α ∈ C̃2 [−1,1]

Now we use the following theorem([2], p 127): Let
α ∈ H1 (−1,1). There exists a sequenceαn ∈ D(R) such
that the restriction̂αn of αn to the interval[−1,1] tends to
α in H1 (−1,1) , α̂n ∈ C2 [−1,1], so thatC2 [−1,1] is
dense inH1 (−1,1) .
Then,C̃2 [−1,1] is dense inH̃1 (−1,1) and the inequality
is valid forα ∈ H̃1(−1,1).
We denote that, if α is cmplex
(α = α1+ iα2 , α1, α2 reals), we have easily:
∫ 1

−1

∣∣α ′∣∣2 (x1)dx1 ≥ |α(1)|2+ |α(−1)|2 ; ∀α ∈ H̃1
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Now, we can prove that[a0(α,α)]1/2 defines on
H̃1 (−1,1) a norm which is equivalent to the classical
norm‖α‖1 of H1 (−1,1).
We set

b(α, α̂) =

∫ 1

−1
αα̂ ′ dx1−

[
α (1) α̂ (1)+α (−1)α̂ (−1)

]

By virtue of the precedent result, we have

b(α,α) ≥ 0

Consequently, we have

a0(α,α) =

∫ 1

−1
|α|2 dx1+

τ
ρgd2b(α,α) ≥ 0

Let us prove that there exists a constant such thatc> 0

a0 (α,α)

‖α‖2
1

≥ c ; ∀α ∈ H̃1 (−1,1)

If c doesn’t exist, there is a sequence{αn} ∈ H̃1 (−1,1)
such that

a0 (αn,αn)

‖αn‖2
1

→ 0 n→+∞

By homogeneity, we can suppose‖αn‖2
1 = 1, and then

a0 (αn,αn)→ 0.
From the sequence{αn} bounded inH̃1 (−1,1), we can
extract a subsequence, still denoted{αn} , that is weakly
convergent inH̃1 (−1,1), thus strongly convergent in
L̃2 (−1,1) to a limit α∗ ∈ H̃1 (−1,1)⊂ L̃2 (−1,1).
Froma0(αn,αn)→ 0, we deduce

‖αn−αm‖2
L2 +

τ
ρgd2b(αn−αm,αn−αm)→ 0;

whenn, m→+∞ ,

so that
b(αn−αm,αn−αm)→ 0

or




‖α ′
n−α ′

m‖2
L2

−
[
(αn(1)−αm(1))2+(αn(−1)−αm(−1))2

] → 0

Since{αn} is weakly convergent iñH1, the sequences of
traces{αn(1)} and{αn(−1)} are strongly convergent in
C, so that ∥∥α ′

n−α ′
m

∥∥
L2 → 0

Therefore, from

‖αn−αm‖2
1 =

∥∥α ′
n−α ′

m

∥∥2
L2 + ‖αn−αm‖2

L2 ,

we deduce
‖αn−αm‖1 → 0

and the sequence{αn} is strongly convergent toα∗ in
H̃1. Then, from‖αn‖1 = 1, we deduce‖α∗‖1 = 1.
On the other hand, froma0 (αn,αn) → 0 we deduce
‖αn‖2

L2 → 0 and consequentlyα∗ = 0, that contradicts the
precedent result.
Finally, c exists and the forma0 (α, α̂) is coercive in
H̃1× H̃1 .
Let us return to the variational equation (55).
Contrary toα andα̂, v does not verify

∫ 1
−1vdx1 = 0. But

w= v− 1
2

∫ 1
−1vdx1 verify

∫ 1

−1
wdx1 = 0; w′ = v′ and

∫ 1

−1
wα̂ dx1 =

∫ 1

−1
vα̂ dx1.

Therefore, the variational formulation of the problem for
α(x1) is:
To find α(·) ∈ H̃1 (−1,1) such that

a0 (α, α̂) = (λ1w, α̂)L̃2 ∀α̂ ∈ H̃1 (56)

If we call Q0 the unbounded operator of̃L2 (−1,1)

associated toa0 (., .) and the pair
(

H̃1, L̃2
)

, the equation

(56) is equivalent to

α = λ1Q−1
0 w (57)

iii) Then, we can calculatew(x1) and λ1 by solving the
eigenvalues problem(P) :

− d
dx1

[
(1− x2

1)w
′]= λ1Q−1

0 w (58)

∫ 1

−1
w(x1)dx1 = 0 (59)

and there are not boundary conditions.
If λ1 is an eigenvalue and andw a corresponding
eigenelement, the eigenelementv is given by the equation
(52):

v= Q−1
0 w− τ

ρgd2

(
Q−1

0 w
)′′

(We remark thatQ−1
0 w belongin toD(Q0), belongs to

H̃1 (−1,1)).
In order to solve the problem(P), we use results obtained
in [3] on the Legendre’s operators.
We introduce the spaces

V =

{
u∈ L2 (−1,1) ;

√
1− x2

1 u′ ∈ L2 (−1,1)

}
;

Ṽ =

{
u∈V;

∫ 1

−1
u(x1)dx1 = 0

}

equipped with the scalar product

a0 (u, ũ) =
∫ 1

−1

{
(1− x2

1)u
′ũ′+uũ

}
dx1
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V andṼ are Hilbert spaces and the embeddingV ⊂ L2 and
Ṽ ⊂ L2 are continuous, dense and compact [3].
Let consider the problem(P).

SinceλQ−1
0 w ∈ L̃2 ,

√
1− x2

1 w′ ∈ H1 and, consequently

[3]
√

1− x2
1 w′ = 0 for x1 =±1.

We have
∫ 1

−1
− d

dx1

[
(1− x2

1)w
′] ·Wdx1 =

(
λ1Q−1

0 w,W
)

L̃2 ∀W ∈ Ṽ

Writing W = W̃− 1
2

∫ 1
−1W̃dx1 with W̃ arbitrary inV, we

have
∫ 1

−1
− d

dx1

[
(1− x2

1)w
′]·W̃dx1=

(
λ1Q−1

0 w,W̃
)

L2
∀W̃ ∈V.

But D(−1,1) is dense inV [3]. TakingŴ ∈ D(−1,1) and
integrating by parts, we have





[
−(1− x2

1)w
′Ŵ

]1

−1
+

∫ 1
−1(1− x2

1)w
′ ·Ŵ

′
dx1

= λ1
(
Q−1

0 w,Ŵ
)

L2 ; ∀Ŵ ∈ D(−1,1)

The first term of the left-hand side has sense and it is equal
to zero, so that we have

∫ 1

−1
(1−x2

1)w
′ ·Ŵ

′
dx1= λ1

(
Q−1

0 w,Ŵ
)

L2 ; ∀Ŵ ∈D(−1,1)

(60)
therefore by density for eacĥW ∈V and finally

∫ 1

−1
(1− x2

1)w
′ ·W̃

′
dx1 = λ1

(
Q−1

0 w,W̃
)

L2
; ∀ W̃ ∈ Ṽ

(61)
Reciprocally, from (61), we deduce (60) and consequently

− d
dx1

[
(1− x2

1)w
′]= λ1Q−1

0 w in D
′(−1,1)

Therefore, the variational formulation of the problem(P)
is : to findw∈ Ṽ verifying (61).
The sesquilinear form of the left-hand side of (61) is
hermitian and continuous oñV × Ṽ. We are going to
prove that is coercive, i.e there exists a constantc0 > 0
such that

∫ 1

−1
(1− x2

1)w
′2dx1 ≥ c0‖w‖2

Ṽ ; ∀w ∈ Ṽ.

If c0 > 0 does not exist, there exists a sequence{wn} ∈ Ṽ
such that

‖wn‖Ṽ = 1,
∫ 1

−1
(1− x2

1)w
′2
n dx1 → 0 when n→ ∞.

From the sequence{wn}, we can extract a subsequence,
still denoted{wn} that is strongly convergent iñL2 to a

limit w̃∈ Ṽ ⊂ L̃2:

‖wn− w̃‖L̃2 → 0

From

‖wn−wm‖2
Ṽ =

∫ 1

−1

[
(1− x2

1)
(
w′

n−w′
m

)2
+(wn−wm)

2
]

dx1

and the precedent result, we deduce

‖wn−wm‖Ṽ → 0 when n, m → ∞.

The sequence{wn} is convergent in Ṽ to w̃ and
consequently

‖w̃‖Ṽ = 1.

On the other hand, from
∫ 1
−1(1 − x2

1)w̃
′2dx1 = 0, we

deducew̃′ = 0, thenw̃ = cte, and, sincew̃ ∈ Ṽ, w̃ = 0,
that contradicts the precedent result.
There, we can finish like in the regular case.
let us callL̃0 , the unbounded opertor of̃L2 associated to

the form
∫ 1
−1(1− x2

1)w
′ ·W′

dx1 and the pair
(
Ṽ, L̃2

)
.

The variational equation (61) is equivalent to the
operatorial equation

L̃0w= λ1Q−1
0 w (62)

Setting L̃1/2
0 w = w∗ and and introducing the operator

C = L̃−1/2
0 Q−1

0 L̃−1/2
0 bounded iñL2, self-adjoint, positive

definite and compact, we obtain the equivalent equation

Cw∗ = λ−1
1 w∗ (63)

The eigenvaluesλ1 j of the problem are the inverse of the
eigenvalues ofC and we have

0< λ11≤ λ12≤ ·· · ≤ λ1n ≤ ·· · ; λ1n → ∞ when n→ ∞

The eigenfunctionwn of the problem verify

(
Q−1

0 wn,wm
)

L̃2 =





0 if m 6= n

λ−1
1n if m= n

Thevn are given by

vn = Q−1
0 wn−

τ
ρgd2

(
Q−1

0 wn
)′′

Remark: It was possible to avoid a few precedent
calculations by using the general theory of the degenerate
elliptic operators of Baouendi and Goulaouic ([1], [7]);
this theory must be used in the case of an arbitrary
container.�

In our case, we consider the operator (of Legendre)

L̃0 =− d
dx1

[
(1− x2

1)
d

dx1

]
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without boundary condition.
It can be proved that
1) L̃0 is topological isomorphism of

D(L̃0) =
{

w∈ H̃1 (−1,1) ;
(
1− x2

1

)
w∈ H2 (−1,1)

}

ontoL̃2 (−1,1)
2) L̃0, considered as an unbounded operator ofL̃2 (−1,1),
has an inversẽL−1

0 bounded from̃L2 (−1,1) in L̃2 (−1,1),
self-adjoint, definite positive and compact.
Then the problem(P) is :
To findw∈ D(L̃0) andλ1 ∈ R such that

L̃0w= λ1Q−1
0 w

It is the equation (62)

4.4 The second order approximation

i) we have

∂ 2Φ̂2

∂z2 =
z2

2
vIV (x1)− zα ′′(x1)−w′′(x1) in Ωz;





∂Φ̂2
∂z

∣∣∣z=x2
1−1

= 2x1

[
− (x2

1−1)2

2 v′′′(x1)+ (x2
1−1)α ′(x1)+w′

1(x1)
]

;

∫ 1

−1

∂Φ̂2

∂z
|z=0 dx1 = 0 ;

∂Φ̂2

∂z
|z=0 −

τ
ρgd2

∂ 2

∂x2
1

(
∂Φ̂2

∂z
|z=0

)
= λ2v(x1)+λ1w1(x1);

∂
∂x1

(
∂Φ̂2

∂z

)
=±∂Φ̂1

∂z
for z= 0; x1 =±1.

These equations give

Φ̂2 =
z4

24
vIV (x1)−

z3

6
α ′′(x1)−

z2

2
w′′

1(x1)+zβ (x1)+w2(x1),

whereβ (x1) andw2(x1) are to determine,

β (x1) =
d

dx1

[
− (x2

1−1)3

6
v′′′+

(x2
1−1)2

2
α ′+(x2

1−1)w′
1

]
;

∫ 1

−1
β (x1)dx1 = 0 ;

β (x1)−
τ

ρgd2 β ′′(x1) = λ2v(x1)+λ1w2(x1) ;

β ′ (±1) =±β (±1) .

ii) Instead of consider straight the problem forw1(x1) ,
we are going to solve the problem for
β (x1), v(x1), w1(x1), λ1, λ2 being supposed known.
We have

β (x1)−
τ

ρgd2 β ′′(x1) = λ2v(x1)+λ1w2(x1) (64)

∫ 1

−1
β (x1)dx1 = 0 (65)

β ′ (±1) =±β (±1) (66)

This problem is analogous to the problem forα(x1) and
we have with the precedent notations

a0

(
β , β̂

)
= λ2

∫ 1

−1
vβ̂ dx1+λ1

∫ 1

−1
w1β̂ dx1 ∀β ∈ H̃1.

Sincev (respw1) does not verify
∫ 1
−1v(x1)dx1 = 0 (resp∫ 1

−1w1(x1)dx1 = 0), we introduce

w= v− 1
2

∫ 1

−1
v(x1)dx1 ; W1 =w1−

1
2

∫ 1

−1
w1(x1)dx1.

The variational formulation of the problem is:
To find β ∈ H̃1 such that

a0

(
β , β̂

)
=
(

λ2w0+λ1W1, β̂
)

L̃2
∀β̂ ∈ H̃1.

and we obtain,Q0 being the unbounded operator wich we
have used:

β (x1) = λ2Q−1
0 w+λ1Q

−1
0 W1.

iii) Now, we can calculatew1(x1) andλ2 by solving the
eigenvalues problem:

− d
dx1

[
(1− x2

1)W
′
1

]
−λ1Q

−1
0 W1 = f̂ (w)+λ2Q−1

0 w (67)

∫ 1

−1
W1dx1 = 0 (68)

where

f̂ (w) =− d
dx1

[
(1− x2

1)
6

6
w′′− (1− x2

1)
2

2
d2

dx2
1

(1− x2
1)w

′
]

Anyway, it is a matter of a countable infinity of problems,
obtained by replacingλ1 by λ1k andw by wk (k= 1,2· · ·).
Like in the regular case, the problem is possible only if
the right-hand side of (67) is orthogonal inL̃2 to the
eigenelementswk corresponding to theλ1k.
Supposing still that theλ1k are simple eigenvalues, we
obtain

λ2k =−λ1k
(

f̂ (wk),wk
)

L̃2 = 0 (69)

The problem forW1 can be written

L̃0W1 = λ1kQ
−1
0 W1+ f̂ (wk)+λ2kQ

−1
0 wk
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Setting

L̃1/2
0 W1 =W∗

1 , C= L̃−1/2
0 Q−1

0 L̃−1/2
0

we obtain

W∗
1 = λ1kCW∗

1 + L̃−1/2
0 f̂ (wk)+λ2kCw∗

k

Let us seekW∗
1 in the form

W∗
1 ∼ ∑

n
enw∗

n;

We obtain, by seeking

L̃−1/2
0 f̂ (wk)∼ ∑

n
gnw∗

n,

where thegn are known:




en(1−λ1kλ−1
1n )−gn = 0 for n 6= k ;

−gk−λ2kλ−1
1k = 0 for n= k

The last equation gives (69); the others give theen for n 6=
k, ek remaining indeterminate.
We find finally

W1 ∼ ekwk+ ∑
n6=k

gn(1−λ1kλ−1
1n )wn

Consequently, we must calculate the third approximation
in ordrer to determineek and thenW1.
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University, Morocco.
He received the PhD degree
in structural engineering
at Abdelmalek Essaâdi
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