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Abstract: In this paper, we define some properties of sums of Fibonacci numbers. Also we present the sum of 1s   

consecutive members of Fibonacci sequence and the same thing for even and for odd and their product of adjacent 

Fibonacci numbers. Mainly, Binet’s formula will be used to establish properties of Fibonacci sequence. 
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1 Introduction 

The amount of literature bears witness to the ubiquity of the 

Fibonacci numbers and the Lucas numbers. Not only are 

these numbers popular in expository literature because of 

their beautiful properties, but also the fact that they `occur 

in nature' adds to their fascination. The Fibonacci sequence 

is a source of many nice and interesting identities. The term 

“Fibonacci numbers" is used to describe the series of 

numbers generated by the pattern 0, 1, 1, 2, 3, 5, 8, 13, 21, 

34, 55, 89, 144…where each number in the sequence is 

given by the sum of the previous two terms. 

It is well known that the Fibonacci numbers and 

Lucas numbers are closely related. The term “Lucas 

numbers" is used to describe the series of numbers 

generated by the pattern   2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 

123, 19,…These numbers are of great importance in the 

study of any subjects such as Algebra, geometry and 

number theory itself. The sequence of Fibonacci numbers 

nF  is defined by 

1 2 0 1, 2 0, 1n n nF F F n with F F          (1.1) 

The sequence of Lucas numbers nL  is defined by 

1 2 0 1, 2 2, 1n n nL L L n with L L           (1.2) 

In the 19th century, the French mathematician Binet 

devised two remarkable analytical formulas for the 

Fibonacci and Lucas numbers [5]. In our case, Binet’s 

formula allows us to express the Fibonacci numbers and 

Lucas numbers in function of the roots 
1 2&   of the 

following characteristic equation, associated to the 

recurrence relation (1.1) and (1.2): 
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The Binet’s formula for Fibonacci sequence and Lucas 

sequence is given by 
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In [7], Rajesh and Leversha define some properties of 

Fibonacci numbers in odd terms. In [10], Zvonko Čerin 

defines some sums of squares of odd and even terms of 

Lucas sequence. In [11], Zvonko Čerin improves some 

results on sums of squares of odd terms of the Fibonacci 

sequence by Rajesh and Leversha. In [4], H. Belbachir and 

F. Bencherif recover and extend all result of Zvonko Čerin 

[9] and Zvonko Čerin and Gianella [13]. In [12], Zvonko 
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Čerin and Gianella defines sums of Pell numbers. In [8], 

Panwar, Rathore and Chawla, present the sum of 

consecutive members of k-Fibonacci numbers. In this paper 

we define some properties of sums of Fibonacci numbers 

for  * 0,1,2,3,4,...N  and 
**N for the product

* *N N . 

2 Main Results 

In this section, we prove some formulas for sums of a finite 

number of consecutive terms of the Fibonacci numbers. 

First we find the formula for the 

s

v k

k o

F 



 when 0s  and 

0v  are integers.  

Proposition 1: For   **,s v N the following equality 

holds: 
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This completes the proof. 

Proposition 2: For   **,s v N the following equality 

holds:  2 2 2 2 2 2 2 2 2 2
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This completes the proof. 

Proposition 3: For   **,s v N the following equality 

holds: 
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This completes the proof.  

Proposition 4: For   **,s v N the following equality 

holds: 
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This completes the proof. 

Proposition 5: For   **,s v N the following equality 

holds: 
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This completes the proof. 

Proposition 6: For   **,s v N  the following equality 

holds: 
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This completes the proof. 

3. Conclusion 

In this paper, we present many properties. We define the 

sum of 1s   consecutive members of Fibonacci sequence 

and the same thing for even and for odd and their product 

of adjacent Fibonacci numbers. 
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