Login New user?  
02- Progress in Fractional Differentiation and Applications
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Vol. 10 > No. 2

 
   

Infinitely Many Solutions for Fractional Hamiltonian Systems with Locally Defined Potentials

PP: 231-240
doi:10.18576/pfda/100204
Author(s)
Wafa Selmi, Mohsen Timoumi,
Abstract
In this paper, we are concerned with the existence of infinitely many solutions for the following fractional Hamiltonian system \begin{equation} \label{eq1} \left\{ \begin{array}{l} _{t}D_{\infty}^{\alpha}(_{-\infty}D_{t}^{\alpha}u)(t)+L(t)u(t)=\nabla W(t,u(t)),\ t\in\mathbb{R}\u\in H^{\alpha}(\mathbb{R}), \end{array}\right. \end{equation} where $_{-\infty}D_{t}^{\alpha}$ and $_{t}D^{\alpha}_{\infty}$ are left and right Liouville-Weyl fractional derivatives of order $\frac{1}{2}<\alpha<1$ on the whole axis respectively, $L\in C(\mathbb{R},\mathbb{R}^{N^{2}})$ is a symmetric matrix valued function unnecessary coercive and $W(t,x)\in C^{1}(\mathbb{R}\times\mathbb{R}^{N},\mathbb{R})$. The novelty of this paper is that, assuming that $L$ is bounded from below and unnecessarily coercive at infinity, and $W$ is only locally defined near the origin with respect to the second variable, we show that (\ref{eq1}) possesses infinitely many solutions via a variant Symmetric Mountain Pass Theorem.

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved